Benzyl-benzoate/carbamazepine/clobazam

2021 ◽  
Vol 1864 (1) ◽  
pp. 74-74
Keyword(s):  
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2249
Author(s):  
Malgorzata Kucharska ◽  
Barbara Frydrych ◽  
Wiktor Wesolowski ◽  
Jadwiga A. Szymanska ◽  
Anna Kilanowicz

Sandalwood oils are highly desired but expensive, and hence many counterfeit oils are sold in high street shops. The study aimed to determine the content of oils sold under the name sandalwood oil and then compare their chromatographic profile and α- and β santalol content with the requirements of ISO 3518:2002. Gas chromatography with mass spectrometry analysis found that none of the six tested “sandalwood” oils met the ISO standard, especially in terms of α-santalol content. Only one sample was found to contain both α- and β-santalol, characteristic of Santalum album. In three samples, valerianol, elemol, eudesmol isomers, and caryophyllene dominated, indicating the presence of Amyris balsamifera oil. Another two oil samples were found to be synthetic mixtures: benzyl benzoate predominating in one, and synthetic alcohols, such as javanol, polysantol and ebanol, in the other. The product label only gave correct information in three cases: one sample containing Santalum album oil and two samples containing Amyris balsamifera oil. The synthetic samples described as 100% natural essential oil from sandalwood are particularly dangerous and misleading to the consumer. Moreover, the toxicological properties of javanol, polysantol and ebanol, for example, are unknown.


2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001
Author(s):  
Le D. Hieu ◽  
Tran M. Hoi ◽  
Tran D. Thang ◽  
Isiaka A. Ogunwande

The chemical compositions of the essential oils obtained by hydrodistillation of three Piper plants grown in Vietnam are reported. The analysis was achieved by means of gas chromatography with flame ionization detection (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main constituents of the leaf oil of Piper majusculum Blume were β-caryophyllene (20.7%), germacrene D (18.6%) and β-elemene (11.3%). The quantitatively significant compounds of the volatile oils of P. harmandii C. DC were sabinene (leaves, 14.5%; stems, 16.2%), benzyl benzoate (leaves, 20.0%; stems, 29.40%) and benzyl salicylate (leaves, 14.1%; stems, 24.3%). Also, α-cadinol (17.0%) was identified in large proportion in the leaf oil. However, sabinene (leaves, 17.9%; stems, 13.5%), benzyl benzoate (leaves, 20.5%; stems, 32.5%) and β-eudesmol (leaves, 13.8%; stems, 8.4%) were the main constituents of P. brevicaule C. DC. This is the first report on the volatile constituents of both P. harmandii and P. brevicaule.


Author(s):  
Eric Caumes ◽  
Marc Marty ◽  
Michel Cadot ◽  
Patrick Boulanger ◽  
Chantal Rousseaux ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 353
Author(s):  
Renata Baranauskienė ◽  
Petras Rimantas Venskutonis

The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44–10.22%), benzyl linoleate (1.72–2.17%) and benzyl alcohol (0.18–1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08–3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59624-59632 ◽  
Author(s):  
Wenjun Wei ◽  
Jingwei He ◽  
Biao Yu ◽  
Yongkun Zou ◽  
Fang Liu ◽  
...  

Microcapsules based on the benzyl benzoate core and CaCO3 shell were synthesized via an interfacial co-precipitation method and used to treat nylon 6 fabric to impart anti-mite activity.


BMJ ◽  
1940 ◽  
Vol 2 (4168) ◽  
pp. 723-723 ◽  
Author(s):  
C. M. Warren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document