scholarly journals Convalescent-anti-SARS-CoV-2-plasma/heparin

2022 ◽  
Vol 1887 (1) ◽  
pp. 223-223
Keyword(s):  
1993 ◽  
Vol 70 (03) ◽  
pp. 448-453 ◽  
Author(s):  
Ole Nordfang ◽  
Hanne I Kristensen ◽  
Sanne Valentin ◽  
Per Østergaard ◽  
Johnny Wadt

SummaryThe anticoagulant activities of Tissue Factor Pathway Inhibitor (TFPI), heparin and hirudin were compared in intrinsic (APTT) and extrinsic (PT) activated clotting assays. In contrast to the thrombin inhibitor hirudin, heparin was 10 fold more potent in the APTT assay than in the PT assay, indicating that inhibition of intrinsic activation is important for the anticoagulant activity of heparin as measured in an APTT assay. TFPI was most potent in the PT assay and the effect of TFPI was most pronounced in the presence of other anticoagulants (heparin and hirudin). The activities of the two natural anticoagulants antithrombin III (ATIII) and TFPI were compared in a PT assay with very dilute tissue factor. In this assay system TFPI in normal plasma affected the clotting time more than ATIII in the plasma. However, when heparin was added ATIII was the major anticoagulant, but profound Prolongation of the clotting time was only seen when TFPI was also added. In an ATIII deficient plasma heparin did not augment the effect of TFPI, showing that the increased effect of TFPI in the presence of heparin is dependent on the anticoagulant activity of ATIII/heparin. The effect of TFPI at prolonged clotting times was also illustrated by the significant effect of blocking TFPI in the plasma from warfarin-treated patients. Thus TFPI is a major anticoagulant in normal plasma and the effect of TFPI is especially seen at prolonged clotting times.


1994 ◽  
Vol 72 (06) ◽  
pp. 862-868 ◽  
Author(s):  
Frederick A Ofosu ◽  
J C Lormeau ◽  
Sharon Craven ◽  
Lori Dewar ◽  
Noorildan Anvari

SummaryFactor V activation is a critical step preceding prothrombinase formation. This study determined the contributions of factor Xa and thrombin, which activate purified factor V with similar catalytic efficiency, to plasma factor V activation during coagulation. Prothrombin activation began without a lag phase after a suspension of coagulant phospholipids, CaCl2, and factor Xa was added to factor X-depleted plasma. Hirudin, a potent thrombin inhibitor, abrogated prothrombin activation initiated with 0.5 and 1.0 nM factor Xa, but not with 5 nM factor Xa. In contrast, hirudin did not abrogate prothrombin activation in plasmas pre-incubated with 0.5,1.0 or 5 nM α-thrombin for 10 s followed by the coagulant suspension containing 0.5 nM factor Xa. Thus, thrombin activates plasma factor V more efficiently than factor Xa. At concentrations which doubled the clotting time of contact-activated normal plasma, heparin and three low Mr heparins also abrogated prothrombin activation initiated with 0.5 nM factor Xa, but not with 5 nM factor Xa. If factor V in the factor X-depleted plasma was activated (by pre-incubation with 10 nM a-thrombin for 60 s) before adding 0.5,1.0, or 5 nM factor Xa, neither hirudin nor the heparins altered the rates of prothrombin activation. Thus, none of the five anticoagulants inactivates prothrombinase. When 5 or 10 pM relipidated r-human tissue factor and CaCl2 were added to normal plasma, heparin and the three low Mr heparins delayed the onset of prothrombin activation until the concentration of factor Xa generated exceeded 1 nM, and they subsequently inhibited prothrombin activation to the same extent. Thus, hirudin, heparin and low Mr heparins suppress prothrombin activation solely by inhibiting prothrombinase formation.


1978 ◽  
Vol 40 (02) ◽  
pp. 397-406 ◽  
Author(s):  
Joyce Low ◽  
J C Biggs

SummaryComparative plasma heparin levels were measured in normal subjects injected subcutaneously with 5,000 units of the sodium and calcium salts of heparin. Plasma heparin levels were measured up to 7 hr post-injection by an anti-factor Xa assay (Denson and Bonnar 1973). Preliminary studies indicated that heparin levels were reproducible in subjects who received two injections of the same heparin. Peak plasma concentrations (Cmax) and the time at which peak concentration was reached (Tmax) varied greatly from subject to subject. In one group of subjects (15) two commonly used heparins, a sodium heparin (Evans) and a calcium heparin (Choay) were compared. Peak heparin concentrations were not significantly different. However the Tmax for the sodium heparin (1.5 hr) was significantly earlier than the Tmax for the calcium heparin (3 hr) and this was not due to a difference in the volume of the two heparin injections. No significant difference could be detected in the plasma clearance rate and the molecular weight distribution of the two heparins.In two other groups of subjects, sodium and calcium preparations from two manufacturers were compared. In general, the sodium salts gave rise to significantly higher plasma concentrations, which could be interpreted as a greater bioavailability of sodium salts. These results indicate that the salt of the heparin can influence the plasma concentration achieved after subcutaneous injection.


1981 ◽  
Author(s):  
M Yamamoto ◽  
K Watanabe ◽  
Y Ando ◽  
H Iri ◽  
N Fujiyama ◽  
...  

It has been suggested that heparin caused potentiation of aggregation induced by ADP or epinephrine. The exact mechanism of heparin-induced platelet activation, however, remained unknown. In this paper, we have investigated the role of anti-thrombin III ( AT ) in heparin-induced platelet activation using purified AT and AT depleted plasma. When ADP or epinephrine was added to citrated PRP one minute after addition of heparin ( 1 u/ml, porcine intestinal mucosal heparin, Sigma Co. USA ), marked enhancement of platelet aggregation was observed, compared with the degree of aggregation in the absence of heparin. However, in platelet suspensions prepared in modified Tyrode’s solution, heparin exhibited no potentiating effect on platelet aggregation induced by epinephrine or ADP. Potentiation of epinephrine- or ADP-induced platelet aggregation by heparin was demonstrated when purified AT was added to platelet suspensions at a concentration of 20 μg/ml. AT depleted plasma, which was prepared by immunosorption using matrix-bound antibodies to AT, retained no AT, while determination of α1-antitrypsinα2- macroglobulin and fibrinogen in AT depleted plasma produced values which corresponded to those of the original plasma when dilution factor was taken into account. The activities of coagulation factors were also comparable to those of the original plasma. Heparin exhibited potentiating effect on ADP- or epinephrine-induced aggregation of platelets in original plasma, but no effect in AT depleted plasma. When purified AT was added back to AT depleted plasma at a concentration of 20 μg/ml, potentiation of platelet aggregation by heparin was clearly demonstrated.Our results suggest that effect of heparin on platelet aggregation is also mediated by anti-thrombin III.


1969 ◽  
Vol 21 (03) ◽  
pp. 516-523
Author(s):  
H Engelberg ◽  
L. P Engelberg

SummaryThe addition of small amounts of extrinsic thromboplastin or of thrombin to blood in vitro accelerated coagulation more frequently and to a greater extent when determined by the flowing time test than when measured by the silicone clotting time, or by the blood or plasma heparin tolerance tests. Similar results were obtained when intrinsic thromboplastin formation was stimulated by contact with glass. However there was little or no acceleration of the flowing clotting time of plasma obtained from aliquots of the thromboplastin-containing blood. These results indicate that the flowing clotting time (thrombus formation time) of whole blcod is a more reliable test of hypercoagulability than previously described blood or plasma clotting time tests.


1986 ◽  
Vol 55 (02) ◽  
pp. 218-221 ◽  
Author(s):  
A M Fischer ◽  
P Cornu ◽  
C Sternberg ◽  
F Mériane ◽  
M D Dautzenberg ◽  
...  

SummaryA qualitative abnormality of antithrombin III (AT III) was found in the plasma of a 41-year old patient. The plasmatic AT III antigen concentration was 130% and the progressive anti-F IIa and anti-F Xa activities were normal (105% and 137%). The plasma heparin cofactor activity was less than 10%, when measured by F Ila or F Xa inhibition. Crossed immunoelectrophoresis of AT III in the presence of heparin revealed in the plasma an abnormal slow-moving peak. When tested by affinity chromatography on heparin Sepharose, this abnormal AT III did not bind to heparin. Among the investigated relatives, 5 subjects had normal AT III levels, whatever the test used, the nine others having reduced levels of antithrombin heparin cofactor activity (45-61%) but normal levels of immunoreactive AT III (97-122%). Consanguinity was found in the family history. We therefore considered our patient as homozygous for an AT III molecular abnormality affecting the binding site for heparin.


Sign in / Sign up

Export Citation Format

Share Document