scholarly journals Graded Betti Numbers of Balanced Simplicial Complexes

Author(s):  
Martina Juhnke-Kubitzke ◽  
Lorenzo Venturello

AbstractWe prove upper bounds for the graded Betti numbers of Stanley-Reisner rings of balanced simplicial complexes. Along the way we show bounds for Cohen-Macaulay graded rings S/I, where S is a polynomial ring and $I\subseteq S$ I ⊆ S is a homogeneous ideal containing a certain number of generators in degree 2, including the squares of the variables. Using similar techniques we provide upper bounds for the number of linear syzygies for Stanley-Reisner rings of balanced normal pseudomanifolds. Moreover, we compute explicitly the graded Betti numbers of cross-polytopal stacked spheres, and show that they only depend on the dimension and the number of vertices, rather than also the combinatorial type.

1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


2006 ◽  
Vol 13 (01) ◽  
pp. 47-56
Author(s):  
Zhongming Tang ◽  
Guifen Zhuang

Let Δ be a stable simplicial complex on n vertexes. Over an arbitrary base field K, the symmetric algebraic shifted complex Δs of Δ is defined. It is proved that the Betti numbers of the Stanley-Reisner ideals in the polynomial ring K[x1, x2, …, xn] of the symmetric algebraic shifted complex, exterior algebraic shifted complex and combinatorial shifted complex of Δ are equal.


2007 ◽  
Vol 187 ◽  
pp. 115-156 ◽  
Author(s):  
Christopher A. Francisco ◽  
Adam Van Tuyl

AbstractLet R = k[x1,…,xn] be a polynomial ring over a field k. Let J = {j1,…,jt} be a subset of {1,…, n}, and let mJ ⊂ R denote the ideal (xj1,…,xjt). Given subsets J1,…,Js of {1,…, n} and positive integers a1,…,as, we study ideals of the form These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals. Our main focus is determining when ideals of this form are componentwise linear. Using polymatroidality, we prove that I is always componentwise linear when s ≤ 3 or when Ji ∪ Jj = [n] for all i ≠ j. When s ≥ 4, we give examples to show that I may or may not be componentwise linear. We apply these results to ideals of small sets of general fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini, Valla, and the first author by computing the graded Betti numbers in the s = 2 case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new cases in which this conjecture holds.


10.37236/8564 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Giulia Codenotti ◽  
Jonathan Spreer ◽  
Francisco Santos

We study a variation of Bagchi and Datta's $\sigma$-vector of a simplicial complex $C$, whose entries are defined as weighted averages of Betti numbers of induced subcomplexes of $C$. We show that these invariants satisfy an Alexander-Dehn-Sommerville type identity, and behave nicely under natural operations on triangulated manifolds and spheres such as connected sums and bistellar flips. In the language of commutative algebra, the invariants are weighted sums of graded Betti numbers of the Stanley-Reisner ring of $C$. This interpretation implies, by a result of Adiprasito, that the Billera-Lee sphere maximizes these invariants among triangulated spheres with a given $f$-vector. For the first entry of $\sigma$, we extend this bound to the class of strongly connected pure complexes. As an application, we show how upper bounds on $\sigma$ can be used to obtain lower bounds on the $f$-vector of triangulated $4$-manifolds with transitive symmetry on vertices and prescribed vector of Betti numbers.


2019 ◽  
Vol 19 (06) ◽  
pp. 2050116
Author(s):  
Davide Bolognini ◽  
Ulderico Fugacci

A Betti splitting [Formula: see text] of a monomial ideal [Formula: see text] ensures the recovery of the graded Betti numbers of [Formula: see text] starting from those of [Formula: see text] and [Formula: see text]. In this paper, we introduce an analogous notion for simplicial complexes, using Alexander duality, proving that it is equivalent to a recursive splitting condition on links of some vertices. We provide results ensuring the existence of a Betti splitting for a simplicial complex [Formula: see text], relating it to topological properties of [Formula: see text]. Among other things, we prove that orientability for a manifold without boundary is equivalent to the admission of a Betti splitting induced by the removal of a single facet. Taking advantage of our topological approach, we provide the first example of a monomial ideal which admits Betti splittings in all characteristics but with characteristic-dependent resolution. Moreover, we introduce new numerical descriptors for simplicial complexes and topological spaces, useful to deal with questions concerning the existence of Betti splitting.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].


2013 ◽  
Vol 24 (09) ◽  
pp. 1350069
Author(s):  
MARKUS PERLING

We study equivariant resolutions and local cohomologies of toric sheaves for affine toric varieties, where our focus is on the construction of new examples of indecomposable maximal Cohen–Macaulay modules of higher rank. A result of Klyachko states that the category of reflexive toric sheaves is equivalent to the category of vector spaces together with a certain family of filtrations. Within this setting, we develop machinery which facilitates the construction of minimal free resolutions for the smooth case as well as resolutions which are acyclic with respect to local cohomology functors for the general case. We give two main applications. First, over the polynomial ring, we determine in explicit combinatorial terms the ℤn-graded Betti numbers and local cohomology of reflexive modules whose associated filtrations form a hyperplane arrangement. Second, for the nonsmooth, simplicial case in dimension d ≥ 3, we construct new examples of indecomposable maximal Cohen–Macaulay modules of rank d – 1.


1991 ◽  
Vol 123 ◽  
pp. 39-76 ◽  
Author(s):  
Juan Elias ◽  
Lorenzo Robbiano ◽  
Giuseppe Valla

Let I be a homogeneous ideal of a polynomial ring over a field, v(I) the number of elements of any minimal basis of I, e = e(I) the multiplicity or degree of R/I, h = h(I) the height or codimension of I, i = indeg (I) the initial degree of J, i.e. the minimal degree of non zero elements of I.This paper is mainly devoted to find bounds for v(I) when I ranges over large classes of ideals. For instance we get bounds when I ranges over the set of perfect ideals with preassigned codimension and multiplicity and when I ranges over the set of perfect ideals with preassigned codimension, multiplicity and initial degree. Moreover all the bounds are sharp since they are attained by suitable ideals. Now let us make some historical remarks.


2008 ◽  
Vol 190 ◽  
pp. 35-61 ◽  
Author(s):  
Satoshi Murai ◽  
Pooja Singla

Let K be a field, S a polynomial ring and E an exterior algebra over K, both in a finite set of variables. We study rigidity properties of the graded Betti numbers of graded ideals in S and E when passing to their generic initial ideals. First, we prove that if the graded Betti numbers for some i > 1 and k ≥ 0, then for all q ≥ i, where I ⊂ S is a graded ideal. Second, we show that if for some i > 1 and k ≥ 0, then for all q ≥ 1, where I ⊂ E is a graded ideal. In addition, it will be shown that the graded Betti numbers for all i ≥ 1 if and only if I(k) and I(k+1) have a linear resolution. Here I(d) is the ideal generated by all homogeneous elements in I of degree d, and R can be either the polynomial ring or the exterior algebra.


2013 ◽  
Vol 7 (5) ◽  
pp. 1019-1064 ◽  
Author(s):  
Giulio Caviglia ◽  
Satoshi Murai

Sign in / Sign up

Export Citation Format

Share Document