scholarly journals The application of inter-satellite links connectivity schemes in various satellite navigation systems for orbit and clock corrections determination: simulation study

Author(s):  
Tomasz Kur ◽  
Tomasz Liwosz ◽  
Maciej Kalarus

Abstract Inter-Satellite Links (ISLs) are intended to improve precision of orbit determination and satellite clock estimation. The ISLs provide a precise pseudorange measurements between satellites in a specific constellation. The study is a preparatory assessment of exploitation of seven connectivity schemes in the terms of the precise orbit determination for three types of constellations—Galileo-like with 24 satellites on three orbital planes, GPS-like with 24 satellites on six orbital planes, and GPS with real positions. The first part of the study focused on detailed analysis of the various ISL connectivity schemes, considering the geometry of ISL observations. The selected results of ranging were examined in the context of the precise orbit determination based on weighted least squares adjustment. The second part of the analysis was based on simulated measurements with two approaches. First approach focuses on geometrical dependencies and the second is performed with ISL measurement biases estimation. It was found that the use of the ISL technique with GNSS measurements in orbit determination improves the results by reducing the RMS error in the along-track and cross-track components. Choice of connectivity schemes does not have a significant impact on the total results of orbit determination, but give different contribution to particular components. Introducing constant bias in ISL measurements occurs in slightly worse estimation results. However, the relations between connectivity schemes is very similar to approach without simulation of ISL bias, the differences are at the level of 10%. Satellite and station clock estimation errors are almost equal for all used connectivity schemes. Results of clocks are also not influenced by ISL bias. This study showed that the ISL technique is a highly promising addition for future generations of satellite navigation systems and that sequential and ring connectivity schemes can be recommended for use in future navigation constellations.

2019 ◽  
Vol 11 (18) ◽  
pp. 2117 ◽  
Author(s):  
Li ◽  
Jiang ◽  
Ma ◽  
Lv ◽  
Yuan ◽  
...  

Traditional precise orbit determination (POD) for low Earth orbit (LEO) satellites relies on observations from ground stations and onboard receivers. Although the accuracy can reach centimeter level, there are still problems such as insufficient autonomous operation capability. The inter-satellite link (ISL) is a link used for communication between satellites and has a function of dual-way ranging. Numerous studies have shown that observational data using ISLs can be adopted for POD of navigation satellites. In this contribution, we mainly focus on LEO satellites POD with ISLs. First, we design LEO constellations with different numbers of satellites and ISL measurements, based on which the constellations are simulated. Then rough tests of POD using different link topologies are carried out. The results show that in the 60-LEO constellation the average 3-dimensional (3D) orbital errors are 0.112 m using “4-connected” link topology with constant 4 links per satellite and 0.069 m using “all-connected” link topology with theoretically maximum numbers of links. After that, we carry out refined POD experiments with several sets of satellite numbers and different observation accuracy. The results show the higher link ranging accuracy and the more numbers of links bring higher POD precision. POD with ISLs gets bad performance in the case of center of gravity reference when link ranging accuracy is poor and numbers of links are small. When the link accuracy is 40 cm, average 3D orbital errors of 60-LEO constellation are 0.358 m, which can only meet the demand of autonomous navigation. With the constraint of the right ascension of the ascending node (RAAN), POD using ISLs reaches an extremely high precision when adopting a spatial reference provided by navigation satellites. For 120-LEO constellation, the average 3D orbital errors are 0.010 m; for 192-LEO constellation, the errors are 0.006 m.


2001 ◽  
Vol 56 (3) ◽  
pp. 13
Author(s):  
E. G. Kharin ◽  
V. G. Maslennikov ◽  
N. B. Vavilova ◽  
I. A. Kopylov ◽  
A. Ch. Staroverov

Author(s):  
M. K. Savkin ◽  
A. R. Filatov

Nowadays majority of navigation methods, used in unmanned flying vehicles, are based on satellite navigation systems, such as GPS or GLONASS, or are amplified with them. But hardware, that uses such systems, can’t work in difficult conditions, for example causes by relief: with insufficient number of satellites or at low satellite signal. Satellite navigation systems are vulnerable for methods of radio defense: satellite signal can be deadened or replaced. That is why such systems usage is unacceptable while critical missions during military operations, emergency or reconnaissance. The article briefly describes components used for building alternative satellite-free navigation systems for flying vehicles. For each component its purpose and brief description of working principle are given, advantages and disadvantages are considered.


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Xingyu Zhou ◽  
Hua Chen ◽  
Wenlan Fan ◽  
Xiaohui Zhou ◽  
Qusen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document