Carreau nanofluid heat and mass transfer flow through wedge with slip conditions and nonlinear thermal radiation

Author(s):  
K. Jyothi ◽  
P. Sudarsana Reddy ◽  
M. Suryanarayana Reddy
2016 ◽  
Vol 13 (2) ◽  
pp. 21-27
Author(s):  
lfsana Karim ◽  
M.S. Khan ◽  
M.M. Alam ◽  
M.A. Rouf ◽  
M. Ferdows ◽  
...  

Abstract In the present computational study, the inclined angle effect of unsteady heat and mass transfer flow through salt water in an ocean was studied. The governing equations together with continuity, momentum, salinity and temperature were developed using the boundary layer approximation. Cartesian coordinate system was introduced to interpret the physical model where x-axis chosen along the direction of salt water flow and y-axis is inclined to x-axis. Two angle of inclination was considered such as 90° and 120°. The time dependent governing equations under the initial and boundary conditions were than transformed into the dimensionless form. A numerical solution approach so-called explicit finite difference method (EFDM) was employed to solve the obtained dimensionless equations. Different physical parameter was found in the model such as Prandtl number, Modified Prandtl number, Grashof number, Heat source parameter and Soret number. A stability and convergence analysis was developed in this study to describe the aspects of the finite difference scheme and this analysis is significant due to accuracy of the EFDM approach. The convergence criteria were observed to be in terms of dimensionless parameter as Pr ≥ 0.0128 and Ps ≥ 0.016. The distributions of the temperature and salinity profiles of salt water flow over different time steps were investigated for the effect of different dimensionless parameters and shown graphically.


Author(s):  
M. O. Durojaye ◽  
K. A. Jamiu ◽  
I. O. Ajala

This paper examines the effect of some thermo-physical properties of fluid on heat and mass transfer flow past semi-infinite moving vertical plate. The fluid considered is optically thin such that the thermal radiative heat loss on the fluid is modeled using Rosseland approximation.The governing partial differential equations in dimensionless forms are solved numerically using the Method of Lines (MOL). The velocity, the temperature, and the concentration profiles of the flow are discussed numerically and presented. Numerical values of the skin-friction coefficient, Nusselt number, and Sherwood number at the plate are discussed numerically for various values of thermo-physical parameters and they are presented by the tables.The result shows that an increase in thermal radiation causes increase in velocity and temperature profiles of the flow, thus, the thermal radiation intensifies the convective flow. Also, an increase in Soret number causes increase in velocity and concentration profiles of the flow while the effect is negligible on temperature profile distribution. Similarly, an increase in Dufour number causes increase in velocity and temperature profiles of the flow.


1984 ◽  
Vol 100 (1-2) ◽  
pp. 45-51 ◽  
Author(s):  
P. C. Ram ◽  
C. B. Singh ◽  
U. S. Singh

Sign in / Sign up

Export Citation Format

Share Document