Wavelet analysis of a flexible filament kinematics: emulating C. elegans swimming behavior

Author(s):  
Sara Malvar ◽  
Bruno S. Carmo
2021 ◽  
Author(s):  
Ye Xu ◽  
Lin Zhang ◽  
Yan Liu ◽  
Irini Topalidou ◽  
Cera Hassinan ◽  
...  

SummaryAnimals require robust yet flexible programs to support locomotion. While it is clear that a variety of processes must be engaged to ensure rhythmic actions, the exact mechanisms remain largely unknown. Here we report a novel pathway that connects the D1-like dopamine receptor DOP-1 with a sleep mechanism to modulate swimming in C. elegans. We show that DOP-1 plays a negative role in sustaining swimming behavior. By contrast, a pathway through the D2-like dopamine receptor DOP-3 negatively regulates the initiation of swimming, but its impact fades quickly over a few minutes. We find that DOP-1 and the GPCR kinase GRK-2 function in the sleep interneuron RIS, where DOP-1 modulates the secretion of a sleep neuropeptide FLP-11. Our genetic studies further show that DOP-1 and FLP-11 act in the same pathway to modulate swimming. Together, these results delineate a functional connection between a dopamine receptor and a sleep program to regulate swimming in C. elegans. The temporal transition between DOP-3 and DOP-1 pathways highlights the dynamic nature of neuromodulation for rhythmic movements that persist over time.HIGHLIGHTSThe D1-like dopamine receptor DOP-1 regulates swimming at 10 minutesAn integrated function of DOP-1 and DOP-3 is required for the continuity of swimmingDOP-1 and GRK-2 act in the sleep neuron RISFLP-11, a neuropeptide that promotes sleep, negatively regulates swimmingIN BRIEFXu et al. investigated genetic programs that modulate swimming behavior in the nematode C. elegans. They identified a functional link that couples a D1-like dopamine receptor to a sleep program that modulates the sustained phase rather than the initial phase of swimming.


2020 ◽  
Author(s):  
Kelsey N. Schuch ◽  
Lakshmi Narasimhan Govindarajan ◽  
Yuliang Guo ◽  
Saba N. Baskoylu ◽  
Sarah Kim ◽  
...  

AbstractFollowing prolonged swimming, Caenorhabditis elegans cycle between active swimming bouts and inactive quiescent bouts. Swimming is exercise for C. elegans and here we suggest that inactive bouts are a recovery state akin to fatigue. Previously, analysis of exercise-induced quiescent (EIQ) bouts relied on laborious manual observation, as existing automated analysis methods for C. elegans swimming either cannot analyze EIQ bouts or fail to accurately track animal posture during these bouts. It is known that cGMP-dependent kinase (PKG) activity plays a conserved role in sleep, rest, and arousal. Using C. elegans EGL-4 PKG, we first validate a novel learning-based computer vision approach to automatically analyze C. elegans locomotory behavior and distinguish between activity and inactivity during swimming for long periods of time. We find that C. elegans EGL-4 PKG function predicts EIQ first bout timing, fractional quiescence, bout number, and bout duration, suggesting that previously described pathways are engaged during EIQ bouts. However, EIQ bouts are likely not sleep as animals are feeding during the majority of EIQ bouts. We find that genetic perturbation of neurons required for other C. elegans sleep states also does not alter EIQ dynamics. Additionally, we find that EIQ onset is sensitive to age and DAF-16 FOXO function. In summary, we have validated a new behavioral analysis software that enabled a quantitative and detailed assessment of swimming behavior, including EIQ. We found novel EIQ defects in aged animals and animals with mutations in a gene involved in stress tolerance. We anticipate that further use of this software will facilitate the analysis of genes and pathways critical for fatigue and other C. elegans behaviors.


Soft Matter ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1892-1897 ◽  
Author(s):  
Jin-Sung Park ◽  
Daeyeon Kim ◽  
Jennifer H. Shin ◽  
David A. Weitz

The swimming behavior of a nematode Caenorhabditis elegans (C. elegans) is investigated in a non-Newtonian shear thinning colloidal suspension.


2008 ◽  
Vol 211 (23) ◽  
pp. 3703-3711 ◽  
Author(s):  
R. Ghosh ◽  
S. W. Emmons
Keyword(s):  

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Author(s):  
Takaaki Hirotsu ◽  
Yu Hayashi ◽  
Ryo Iwata ◽  
Hirofumi Kunitomo ◽  
Eriko Kage-Nakadai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document