Forward genetics using radiation hybrids (deletion mutants) in plants

2018 ◽  
Vol 23 (4) ◽  
pp. 622-629 ◽  
Author(s):  
Ajay Kumar ◽  
Shalu Jain
2016 ◽  
Vol 14 (8) ◽  
pp. 1716-1726 ◽  
Author(s):  
Filippo M. Bassi ◽  
Farhad Ghavami ◽  
Matthew J. Hayden ◽  
Yi Wang ◽  
Kerrie L. Forrest ◽  
...  

1993 ◽  
Vol 70 (06) ◽  
pp. 1053-1057 ◽  
Author(s):  
Agnès M Journet ◽  
Simin Saffaripour ◽  
Denisa D Wagner

SummaryBiosynthesis of the adhesive glycoprotein von Willebrand factor (vWf) by endothelial cells results in constitutive secretion of small multimers and storage of the largest multimers in rodshaped granules called Weibel-Palade bodies. This pattern is reproduced by expression of pro-vWf in heterologous cells with a regulated pathway of secretion, that store the recombinant protein in similar elongated granules. In these cells, deletion of the vWf prosequence prevents vWf storage. The prosequence, composed of two homologous domains (D1 and D2), actively participates in vWf multimer formation as well. We expressed deletion mutants lacking either the D1 domain (D2vWf) or the D2 domain (D1vWf) in various cell lines to analyze the relative importance of each domain in vWf muitimerization and storage. Both proteins were secreted efficiently without being retained in the endoplasmic reticulum. Despite this, neither multimerized past the dimer stage and they were not stored. We conclude that several segments of the prosequence are jointly involved in vWf muitimerization and storage.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1445-1454 ◽  
Author(s):  
Xin Jie Chen ◽  
G Desmond Clark-Walker

In a previous report, we found that mutations at the mitochondrial genome integrity locus, MGI1, can convert Kluyveromyces lactis into a petite-positive yeast. In this report, we describe the isolation of the MGI1 gene and show that it encodes the β-subunit of the mitochondrial F1-ATPase. The site of mutation in four independently isolated mgi1 alleles is at Arg435, which has changed to Gly in three cases and Ile in the fourth isolate. Disruption of MGI1 does not lead to the production of mitochondrial genome deletion mutants, indicating that an assembled F1 complex is needed for the “gain-of-function” phenotype found in mgi1 point mutants. The location of Arg435 in the β-subunit, as deduced from the three-dimensional structure of the bovine F1-ATPase, together with mutational sites in the previously identified mgi2 and mgi5 alleles, suggests that interaction of the β- and α- (MGI2) subunits with the γ-subunit (MGI5) is likely to be affected by the mutations.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 327-339 ◽  
Author(s):  
O Riera-Lizarazu ◽  
M I Vales ◽  
E V Ananiev ◽  
H W Rines ◽  
R L Phillips

Abstract In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)—oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0.5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document