scholarly journals Solving two-stage stochastic route-planning problem in milliseconds via end-to-end deep learning

Author(s):  
Jie Zheng ◽  
Ling Wang ◽  
Shengyao Wang ◽  
Yile Liang ◽  
Jize Pan

AbstractWith the rapid development of e-economy, ordering via online food delivery platforms has become prevalent in recent years. Nevertheless, the platforms are facing lots of challenges such as time-limitation and uncertainty. This paper addresses a complex stochastic online route-planning problem (SORPP) which is mathematically formulated as a two-stage stochastic programming model. To meet the immediacy requirement of online fashion, an end-to-end deep learning model is designed which is composed of an encoder and a decoder. To embed different problem-specific features, different network layers are adopted in the encoder; to extract the implicit relationship, the probability mass functions of stochastic food preparation time is processed by a convolution neural network layer; to provide global information, the location map and rider features are handled by the factorization-machine (FM) and deep FM layers, respectively; to screen out valuable information, the order features are embedded by attention layers. In the decoder, the permutation sequence is predicted by long-short term memory cells with attention and masking mechanism. To learn the policy for finding optimal permutation under complex constraints of the SORPP, the model is trained in a supervised learning way with the labels obtained by iterated greedy search algorithm. Extensive experiments are conducted based on real-world data sets. The comparative results show that the proposed model is more efficient than meta-heuristics and is able to yield higher quality solutions than heuristics. This work provides an intelligent optimization technique for complex online food delivery system.

2021 ◽  
Vol 152 ◽  
pp. 107029
Author(s):  
Xing Wang ◽  
Ling Wang ◽  
Shengyao Wang ◽  
Jing-fang Chen ◽  
Chuge Wu

2011 ◽  
Vol 20 (03) ◽  
pp. 457-478 ◽  
Author(s):  
KASHIF ZAFAR ◽  
RAUF BAIG ◽  
NABEEL BUKHARI ◽  
ZAHID HALIM

This research presents an optimization technique for route planning using simulated ant agents for dynamic online route planning and optimization of the route. It addresses the issues involved during route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated ant agent system (SAAS) is proposed using modified ant colony optimization algorithm for dealing with online route planning. It is compared with evolutionary technique on randomly generated environments, obstacle ratio, grid sizes, and complex environments. The evolutionary technique performs well in simple and less cluttered environments while its performance degrades with large and complex environments. The SAAS generates and optimizes routes in complex and large environments with constraints. The traditional route optimization techniques focus on good solutions only and do not exploit the solution space completely. The SAAS is shown to be an efficient technique for providing safe, short, and feasible routes under dynamic constraints and its efficiency has been tested in a mine field simulation with different environment configurations and is capable of tracking the moving goal and performs equally well as compared to moving target search algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1224
Author(s):  
Guiyun Liu ◽  
Cong Shu ◽  
Zhongwei Liang ◽  
Baihao Peng ◽  
Lefeng Cheng

The unmanned aerial vehicle (UAV) route planning problem mainly centralizes on the process of calculating the best route between the departure point and target point as well as avoiding obstructions on route to avoid collisions within a given flight area. A highly efficient route planning approach is required for this complex high dimensional optimization problem. However, many algorithms are infeasible or have low efficiency, particularly in the complex three-dimensional (3d) flight environment. In this paper, a modified sparrow search algorithm named CASSA has been presented to deal with this problem. Firstly, the 3d task space model and the UAV route planning cost functions are established, and the problem of route planning is transformed into a multi-dimensional function optimization problem. Secondly, the chaotic strategy is introduced to enhance the diversity of the population of the algorithm, and an adaptive inertia weight is used to balance the convergence rate and exploration capabilities of the algorithm. Finally, the Cauchy–Gaussian mutation strategy is adopted to enhance the capability of the algorithm to get rid of stagnation. The results of simulation demonstrate that the routes generated by CASSA are preferable to the sparrow search algorithm (SSA), particle swarm optimization (PSO), artificial bee colony (ABC), and whale optimization algorithm (WOA) under the identical environment, which means that CASSA is more efficient for solving UAV route planning problem when taking all kinds of constraints into consideration.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Wenjuan Zhou ◽  
Li Wang

Aiming to provide an approach for finding energy-efficient routes in dynamic and stochastic transportation networks for electric vehicles, this paper addresses the route planning problem in dynamic transportation network where the link travel times are assumed to be random variables to minimize total energy consumption and travel time. The changeable signals are introduced to establish state-space-time network to describe the realistic dynamic traffic network and also used to adjust the travel time according to the signal information (signal cycle, green time, and red time). By adjusting the travel time, the electric vehicle can achieve a nonstop driving mode during the traveling. Further, the nonstop driving mode could avoid frequent acceleration and deceleration at the signal intersections so as to reduce the energy consumption. Therefore, the dynamically adjusted travel time can save the energy and eliminate the waiting time. A multiobjective 0-1 integer programming model is formulated to find the optimal routes. Two methods are presented to transform the multiobjective optimization problem into a single objective problem. To verify the validity of the model, a specific simulation is conducted on a test network. The results indicate that the shortest travel time and the energy consumption of the planning route can be significantly reduced, demonstrating the effectiveness of the proposed approaches.


ORiON ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 88-125
Author(s):  
M Bashe ◽  
M Shuma-Iwisi ◽  
MA Van Wyk

A two-stage stochastic programming model is used to solve the electricity generation planning problem in South Africa for the period 2013 to 2050, in an attempt to minimise expected cost. Costs considered are capital and running costs. Unknown future electricity demand is the source of uncertainty represented by four scenarios with equal probabilities. The results show that the main contributors for new capacity are coal, wind, hydro and gas/diesel. The minimum costs obtained by solving the two-stage stochastic programming models range from R2 201 billion to R3 094 billion.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Lay Eng Teoh ◽  
Hooi Ling Khoo

Essentially, strategic fleet planning is vital for airlines to yield a higher profit margin while providing a desired service frequency to meet stochastic demand. In contrast to most studies that did not consider slot purchase which would affect the service frequency determination of airlines, this paper proposes a novel approach to solve the fleet planning problem subject to various operational constraints. A two-stage fleet planning model is formulated in which the first stage selects the individual operating route that requires slot purchase for network expansions while the second stage, in the form of probabilistic dynamic programming model, determines the quantity and type of aircraft (with the corresponding service frequency) to meet the demand profitably. By analyzing an illustrative case study (with 38 international routes), the results show that the incorporation of slot purchase in fleet planning is beneficial to airlines in achieving economic and social sustainability. The developed model is practically viable for airlines not only to provide a better service quality (via a higher service frequency) to meet more demand but also to obtain a higher revenue and profit margin, by making an optimal slot purchase and fleet planning decision throughout the long-term planning horizon.


2013 ◽  
Vol 33 (5) ◽  
pp. 1194-1196
Author(s):  
Fei DU ◽  
Zhiguo DONG ◽  
Lin MIAO ◽  
Yupeng TUO

2020 ◽  
Vol 14 (2) ◽  
pp. 1658-1669 ◽  
Author(s):  
Zirui Zhuang ◽  
Jingyu Wang ◽  
Qi Qi ◽  
Haifeng Sun ◽  
Jianxin Liao

Author(s):  
Zhengyan Chang ◽  
Zhengwei Zhang ◽  
Qiang Deng ◽  
Zheren Li

The artificial potential field method is usually applied to the path planning problem of driverless cars or mobile robots. For example, it has been applied for the obstacle avoidance problem of intelligent cars and the autonomous navigation system of storage robots. However, there have been few studies on its application to intelligent bridge cranes. The artificial potential field method has the advantages of being a simple algorithm with short operation times. However, it is also prone to problems of unreachable targets and local minima. Based on the analysis of the operating characteristics of bridge cranes, a two-dimensional intelligent running environment model of a bridge crane was constructed in MATLAB. According to the basic theory of the artificial potential field method, the double-layer artificial potential field method was deduced, and the path and track fuzzy processing method was proposed. These two methods were implemented in MATLAB simulations. The results showed that the improved artificial potential field method could avoid static obstacles efficiently.


Sign in / Sign up

Export Citation Format

Share Document