Two-stage IPv6 route search algorithm based on perfect-Hash table and multibit-trie

2013 ◽  
Vol 33 (5) ◽  
pp. 1194-1196
Author(s):  
Fei DU ◽  
Zhiguo DONG ◽  
Lin MIAO ◽  
Yupeng TUO
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


1994 ◽  
Vol 114 (2) ◽  
pp. 223-232
Author(s):  
Fujiwa Kato ◽  
Takao Noguchi ◽  
Tetsuji Santo ◽  
Kazufumi Kaneda ◽  
Eihachiro Nakamae

2016 ◽  
Vol 32 (2) ◽  
pp. 225-232
Author(s):  
PETRICA POP ◽  
◽  
OLIVIU MATEI ◽  
CORINA POP SITAR ◽  
IOANA ZELINA ◽  
...  

This paper is focusing on an important transportation application encountered in supply chains, namely the capacitated two-stage fixed-charge transportation problem. For solving this complex optimization problem we described a novel hybrid heuristic approach obtained by combining a genetic algorithm based on a hash table coding of the individuals with a powerful local search procedure. The proposed algorithm was implemented and tested on an often used collection of benchmark instances and the computational results obtained showed that our proposed hybrid heuristic algorithm delivered competitive results compared to the state-of-the-art algorithms for solving the considered capacitated two-stage fixed-charge transportation problem.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3945
Author(s):  
Muhammad Sohail ◽  
Rashid Ali ◽  
Muhammad Kashif ◽  
Sher Ali ◽  
Sumet Mehta ◽  
...  

The Internet of Things (IoT) is a world of connected networks and modern technology devices, among them vehicular networks considered more challenging due to high speed and network dynamics. Future trends in IoT allow these inter networks to share information. Also, the previous security solutions to vehicular IoT (VIoT) much emphasize on privacy protection and security related issues using public keys infrastructure. However, the primary concern about efficient trust assessment, authorized users malfunctioning, and secure information dissemination in vehicular wireless networks have not been explored. To cope with these challenges, we propose a trust enhanced on-demand routing (TER) scheme, which adopts TrustWalker (TW) algorithm for efficient trust assessment and route search technique in VIoT. TER comprised of novel three-valued subjective logic (3VSL), TW algorithm, and ad hoc on-demand distance vector (AODV) routing protocol. The simulated results validate the accuracy of the proposed scheme in term of throughput, packet drop ratio (PDR), and end to end (E2E) delay. In the simulation, the execution time of the TW algorithm is analyzed and compared with another route search algorithm, i.e., Assess-Trust (AT), by considering real-world online datasets such as Pretty Good Privacy and Advogato. The accuracy and efficiency of the TW algorithm, even with a large number of vehicle users, are also demonstrated through simulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Qianru Zhao ◽  
Shouwen Ji ◽  
Dong Guo ◽  
Xuemin Du ◽  
Hongxuan Wang

According to previous research studies, automated quayside cranes (AQCs) and automated guided vehicles (AGVs) in automated container terminals have a high potential synergy. In this paper, a collaborative scheduling model for AQCs and AGVs is established and the capacity limitation of the transfer platform on AQCs is considered in the model. The minimum total energy consumption of automated quayside cranes (AQCs) and Automatic Guided Vehicles (AGVs) is taken as the objective function. A two-stage taboo search algorithm is adopted to solve the problem of collaborative scheduling optimization. This algorithm integrates AQC scheduling and AGV scheduling. The optimal solution to the model is obtained by feedback from the two-stage taboo search process. Finally, the Qingdao Port is taken as an example of a data experiment. Ten small size test cases are solved to evaluate the performance of the proposed optimization methods. The results show the applicability of the two-stage taboo search algorithm since it can find near-optimal solutions, precisely and accurately.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
De-Xin Yu ◽  
Zhao-Sheng Yang ◽  
Yao Yu ◽  
Xiu-Rong Jiang

Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.


2013 ◽  
Vol 46 ◽  
pp. 687-716 ◽  
Author(s):  
S. Cai ◽  
K. Su ◽  
C. Luo ◽  
A. Sattar

The Minimum Vertex Cover (MVC) problem is a prominent NP-hard combinatorial optimization problem of great importance in both theory and application. Local search has proved successful for this problem. However, there are two main drawbacks in state-of-the-art MVC local search algorithms. First, they select a pair of vertices to exchange simultaneously, which is time-consuming. Secondly, although using edge weighting techniques to diversify the search, these algorithms lack mechanisms for decreasing the weights. To address these issues, we propose two new strategies: two-stage exchange and edge weighting with forgetting. The two-stage exchange strategy selects two vertices to exchange separately and performs the exchange in two stages. The strategy of edge weighting with forgetting not only increases weights of uncovered edges, but also decreases some weights for each edge periodically. These two strategies are used in designing a new MVC local search algorithm, which is referred to as NuMVC. We conduct extensive experimental studies on the standard benchmarks, namely DIMACS and BHOSLIB. The experiment comparing NuMVC with state-of-the-art heuristic algorithms show that NuMVC is at least competitive with the nearest competitor namely PLS on the DIMACS benchmark, and clearly dominates all competitors on the BHOSLIB benchmark. Also, experimental results indicate that NuMVC finds an optimal solution much faster than the current best exact algorithm for Maximum Clique on random instances as well as some structured ones. Moreover, we study the effectiveness of the two strategies and the run-time behaviour through experimental analysis.


Author(s):  
Rachid Habachi ◽  
Achraf Touil ◽  
Abdelkabir Charkaoui ◽  
Abdelwahed Echchatbi

<p>Eagle strategy is a two-stage optimization strategy, which is inspired by the observation of the hunting behavior of eagles in nature. In this two-stage strategy, the first stage explores the search space globally by using a Levy flight; if it finds a promising solution, then an intensive local search is employed using a more efficient local optimizer, such as hillclimbing and the downhill simplex method. Then, the two-stage process starts again with new global exploration, followed by a local search in a new region. One of the remarkable advantages of such a combina-tion is to use a balanced tradeoff between global search (which is generally slow) and a rapid local search. The crow search algorithm (CSA) is a recently developed metaheuristic search algorithm inspired by the intelligent behavior of crows.This research article integrates the crow search algorithm as a local optimizer of Eagle strategy to solve unit commitment (UC) problem. The Unit commitment problem (UCP) is mainly finding the minimum cost schedule to a set of generators by turning each one either on or off over a given time horizon to meet the demand load and satisfy different operational constraints. There are many constraints in unit commitment problem such as spinning reserve, minimum up/down, crew, must run and fuel constraints. The proposed strategy ES-CSA is tested on 10 to 100 unit systems with a 24-h scheduling horizon. The effectiveness of the proposed strategy is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by reported numerical results, it has been found that proposed strategy yields global results for the solution of the unit commitment problem.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document