scholarly journals A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization

Author(s):  
Jinjin Xu ◽  
Yaochu Jin ◽  
Wenli Du

AbstractData-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization are always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and are subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi-/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.

Author(s):  
Rung-Tzuo Liaw ◽  
Chuan-Kang Ting

Evolutionary multitasking is a significant emerging search paradigm that utilizes evolutionary algorithms to concurrently optimize multiple tasks. The multi-factorial evolutionary algorithm renders an effectual realization of evolutionary multitasking on two or three tasks. However, there remains room for improvement on the performance and capability of evolutionary multitasking. Beyond three tasks, this paper proposes a novel framework, called the symbiosis in biocoenosis optimization (SBO), to address evolutionary many-tasking optimization. The SBO leverages the notion of symbiosis in biocoenosis for transferring information and knowledge among different tasks through three major components: 1) transferring information through inter-task individual replacement, 2) measuring symbiosis through intertask paired evaluations, and 3) coordinating the frequency and quantity of transfer based on symbiosis in biocoenosis. The inter-task individual replacement with paired evaluations caters for estimation of symbiosis, while the symbiosis in biocoenosis provides a good estimator of transfer. This study examines the effectiveness and efficiency of the SBO on a suite of many-tasking benchmark problems, designed to deal with 30 tasks simultaneously. The experimental results show that SBO leads to better solutions and faster convergence than the state-of-the-art evolutionary multitasking algorithms. Moreover, the results indicate that SBO is highly capable of identifying the similarity between problems and transferring information appropriately.


2019 ◽  
Vol 6 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Cheng He ◽  
Ye Tian ◽  
Handing Wang ◽  
Yaochu Jin

Abstract Many real-world optimization applications have more than one objective, which are modeled as multiobjective optimization problems. Generally, those complex objective functions are approximated by expensive simulations rather than cheap analytic functions, which have been formulated as data-driven multiobjective optimization problems. The high computational costs of those problems pose great challenges to existing evolutionary multiobjective optimization algorithms. Unfortunately, there have not been any benchmark problems reflecting those challenges yet. Therefore, we carefully select seven benchmark multiobjective optimization problems from real-world applications, aiming to promote the research on data-driven evolutionary multiobjective optimization by suggesting a set of benchmark problems extracted from various real-world optimization applications.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Junhua Ku ◽  
Fei Ming ◽  
Wenyin Gong

In the real-world, symmetry or asymmetry widely exists in various problems. Some of them can be formulated as constrained multi-objective optimization problems (CMOPs). During the past few years, handling CMOPs by evolutionary algorithms has become more popular. Lots of constrained multi-objective optimization evolutionary algorithms (CMOEAs) have been proposed. Whereas different CMOEAs may be more suitable for different CMOPs, it is difficult to choose the best one for a CMOP at hand. In this paper, we propose an ensemble framework of CMOEAs that aims to achieve better versatility on handling diverse CMOPs. In the proposed framework, the hypervolume indicator is used to evaluate the performance of CMOEAs, and a decreasing mechanism is devised to delete the poorly performed CMOEAs and to gradually determine the most suitable CMOEA. A new CMOEA, namely ECMOEA, is developed based on the framework and three state-of-the-art CMOEAs. Experimental results on five benchmarks with totally 52 instances demonstrate the effectiveness of our approach. In addition, the superiority of ECMOEA is verified through comparisons to seven state-of-the-art CMOEAs. Moreover, the effectiveness of ECMOEA on the real-world problems is also evaluated for eight instances.


2012 ◽  
Vol 542-543 ◽  
pp. 294-301
Author(s):  
Qing Zhang ◽  
San You Zeng ◽  
Hai Qing Ye ◽  
Zheng Jun Li ◽  
Hong Yong Jing

A dynamic evolutionary algorithms (DEA) is designed to solve engineering problems in this paper. The DEA algorithm makes two differences. (1) Dynamic technique is used to handle equality constraints. (2) Two unrelated crossovers (linear crossover and uniform crossover) are combined in the algorithm for avoiding duplicate search and then helping global search. In solving engineering problems, three steps are taken: a DEA algorithm is designed first, then after tested by general benchmark problems, it is improved, and the third step is that the improved DEA algorithm is applied to solve engineering problems. The general test suggests our DEA algorithm outperforms the compared state-of-the-art other algorithms. The experimental results in solving 5 engineering problems indicate that our method works much better than the compared state-of-the-art algorithms, especially, in global search.


2021 ◽  
Author(s):  
Muhammad Ali Chattha

This work presents DeepLSF, a framework for time series forecasting that fuses knowledge driven techniques with data driven neural networks. The proposed framework achieves State-Of-The-Art results on three different real world time series forecasting datasets.


2021 ◽  
Author(s):  
Muhammad Ali Chattha

This work presents DeepLSF, a framework for time series forecasting that fuses knowledge driven techniques with data driven neural networks. The proposed framework achieves State-Of-The-Art results on three different real world time series forecasting datasets.


Author(s):  
Yajie Zhang ◽  
Ye Tian ◽  
Xingyi Zhang

AbstractSparse large-scale multi-objective optimization problems (LSMOPs) widely exist in real-world applications, which have the properties of involving a large number of decision variables and sparse Pareto optimal solutions, i.e., most decision variables of these solutions are zero. In recent years, sparse LSMOPs have attracted increasing attentions in the evolutionary computation community. However, all the recently tailored algorithms for sparse LSMOPs put the sparsity detection and maintenance in the first place, where the nonzero variables can hardly be optimized sufficiently within a limited budget of function evaluations. To address this issue, this paper proposes to enhance the connection between real variables and binary variables within the two-layer encoding scheme with the assistance of variable grouping techniques. In this way, more efforts can be devoted to the real part of nonzero variables, achieving the balance between sparsity maintenance and variable optimization. According to the experimental results on eight benchmark problems and three real-world applications, the proposed algorithm is superior over existing state-of-the-art evolutionary algorithms for sparse LSMOPs.


Author(s):  
Junhua Liu ◽  
Yuping Wang ◽  
Xingyin Wang ◽  
Si Guo ◽  
Xin Sui

The performance of the traditional Pareto-based evolutionary algorithms sharply reduces for many-objective optimization problems, one of the main reasons is that Pareto dominance could not provide sufficient selection pressure to make progress in a given population. To increase the selection pressure toward the global optimal solutions and better maintain the quality of selected solutions, in this paper, a new dominance method based on expanding dominated area is proposed. This dominance method skillfully combines the advantages of two existing popular dominance methods to further expand the dominated area and better maintain the quality of selected solutions. Besides, through dynamically adjusting its parameter with the iteration, our proposed dominance method can timely adjust the selection pressure in the process of evolution. To demonstrate the quality of selected solutions by our proposed dominance method, the experiments on a number of well-known benchmark problems with 5–25 objectives are conducted and compared with that of the four state-of-the-art dominance methods based on expanding dominated area. Experimental results show that the new dominance method not only enhances the selection pressure but also better maintains the quality of selected solutions.


Sign in / Sign up

Export Citation Format

Share Document