Use of rainfall forecast from a high-resolution global NWP model in a hydrological stream flow model over Narmada river basin during monsoon

2018 ◽  
Vol 4 (3) ◽  
pp. 1029-1040 ◽  
Author(s):  
Suresh Band Goswami ◽  
Prasanta Kumar Bal ◽  
Ashis K. Mitra
2021 ◽  
Author(s):  
Ankit Singh ◽  
Soubhik Mondal ◽  
Sanjeev Kumar Jha

<p>Short-term streamflow forecast is important for various hydrological applications such as, estimating inflow to reservoirs, sending alarms in case of extreme events like flood and flash floods etc. Flooding events in last few years in the Indian subcontinent emphasized the importance of more accurate streamflow forecasts and the possible benefit of high-resolution Numerical Weather Prediction (NWP) models has been confirmed. In India, National Center for Medium Range Weather Forecasting (NCMRWF) provides rainfall forecasts from its UK Met office Unified Model based deterministic model (NCUM), and ensemble prediction system (NEPS). The comparison of NCMRWF with the forecast from other agencies such as Japan Metrological Agency (JMA)and European Center for Medium Range Forecast (ECMWF) have been addressed in this work. Global NWP models developed by different international agencies applydifferent algorithms, initial and boundaries conditions.The usefulness of several forecasts in streamflow forecasting is still being investigated in India. Recent studies on streamflow forecasting by using different NWP models shows that the performance of streamflow forecasts directly depends on the skill of NWP models. Hydrological model also plays a vital role in stream flow forecasting, because different hydrological model have different structure, parameters and algorithms to simulate the flow.</p><p>            In this study we use the Soil and Water Assessment Tool (SWAT) a Hydrological Response Unit (HRU’s) based hydrological model. HRU is the area that contains similar type of soil, land use and slope properties in a subbasin. For comparison, the streamflow generated from the forecasted rainfall by NWP, we select three different NWP models namely JMA, ECMWF and NCMRWF for streamflow forecasting. Manot watershed part of Narmada River basin in central India is selected as the study area for this study. Streamflow is examined for monsoon (June to September) period of 2018 at multiple lead times i.e. 1 to 5 days. Rain-gauge based gridded Indian Meteorological Department (IMD) rainfall product is used as observed data in SWAT. All rainfall products are at 0.25*0.25-degree spatial resolution. The preliminary comparison between the simulated streamflow and the observation shows that the stream flow patterns produced by various forecast products are in good comparison with high peaks. Our results also indicate that the forecast accuracy of NCMRWF is closely comparable with other forecast products for all lead time. In addition, the setup of Variable Infiltration Capacity (VIC), the hydrological model for Streamflow forecasting is in progress. The VIC model is a grid-based model with variable infiltration soil layers and each of this layer characterizes the soil hydrological responses and heterogeneity in land cover classes. For routing, VIC model divides the whole basin into grides and water balance is calculated at the outlet of each and every grid and the flow simulate according to the flow direction. This model considers both the baseflow and the surface flow. The detailed results of ongoing work will be presented at the conference.</p>


2021 ◽  
Author(s):  
Yifan Cheng ◽  
Andrew Newman ◽  
Sean Swenson ◽  
David Lawrence ◽  
Anthony Craig ◽  
...  

<p>Climate-induced changes in snow cover, river flow, and freshwater ecosystems will greatly affect the indigenous groups in the Alaska and Yukon River Basin. To support policy-making on climate adaptation and mitigation for these underrepresented groups, an ongoing interdisciplinary effort is being made to combine Indigenous Knowledge with western science (https://www.colorado.edu/research/arctic-rivers/).</p><p>A foundational component of this project is a high fidelity representation of the aforementioned land surface processes. To this end, we aim to obtain a set of reliable high-resolution parameters for the Community Territory System Model (CTSM) for the continental scale domain of Alaska and the entire Yukon River Basin, which will be used in climate change simulations. CTSM is a complex, physically based state-of-the-science land surface model that includes complex vegetation and canopy representation, a multi-layer snow model, as well as hydrology and frozen soil physics necessary for the representation of streamflow and permafrost. Two modifications to the default CTSM configuration were made. First, we used CTSM that is implemented with hillslope hydrology to better capture the fine-scale hydrologic spatial heterogeneity in complex terrain. Second, we updated the input soil textures and organic carbon in CTSM using the high-resolution SoilGrid dataset.</p><p>In this study, we performed a multi-objective optimization on snow and streamflow metrics using an adaptive surrogate-based modeling optimization (ASMO). ASMO permits optimization of complex land-surface models over large domains through the use of surrogate models to minimize the computational cost of running the full model for every parameter combination. We ran CTSM at a spatial resolution of 1/24<sup>th</sup> degree and a temporal resolution of one hour using the ERA5 reanalysis data as the meteorological forcings. The ERA5 reanalysis data were bias-corrected to account for the orographic effects. We will discuss the ASMO-CTSM coupling workflow, performance characteristics of the optimization (e.g., computational cost, iterations), and comparisons of the default configuration and optimized model performance.</p>


Author(s):  
Vishal M. Rasal ◽  
Swapnil G. Yadre ◽  
Satya Prakash Shukla ◽  
P. M. Ravi ◽  
P. M. Ravi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document