Modelling the effect of geo-matrix conduction on the bulk and pore water resistivity in hydrogeological sedimentary beddings

Author(s):  
N. J. George ◽  
A. M. Ekanem ◽  
J. E. Thomas ◽  
T. A. Harry
Keyword(s):  
2018 ◽  
Vol 1 (1) ◽  
pp. 28-40
Author(s):  
Suneetha Naidu ◽  
Gautam Gupta

Estimation of hydraulic parameters in coastal aquifers is an important task in groundwater resource assessment and development. An attempt is made to estimate these parameters using geoelectrical data in combination with pore-water resistivity of existing wells. In the present study, 29 resistivity soundings were analysed along with 29 water samples, collected from the respective dug wells and boreholes, in order to compute hydraulic parameters like formation factor, porosity, hydraulic conductivity and transmissivity from coastal region of north Sindhudurg district, Maharashtra, India. The result shows some parts of the study area reveal relatively high value of hydraulic conductivity, porosity and transmissivity. Further, a negative correlation is seen between hydraulic conductivity and bulk resistivity. The hydraulic conductivity is found to vary between 0.014 and 293 m/day, and the transmissivity varied between 0.14 and 11,722 m2/day. The transmissivity values observed here are in good correspondence with those obtained from pumping test data of Central Ground Water Board. These zones also have high aquifer thickness and therefore characterize high potential within the water-bearing formation. A linear, positive relationship between transverse resistance and transmissivity is observed, suggesting increase in transverse resistance values indicate high transmissivity of aquifers. These relations will be extremely vital in characterization of aquifer system, especially from crystalline hard rock area.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


2020 ◽  
Author(s):  
Hua Chen ◽  
◽  
Mahmut Sarili ◽  
Cong Wang ◽  
Koichi Naito ◽  
...  

2019 ◽  
Vol 74 (6) ◽  
pp. 613-615
Author(s):  
V. A. Shevnin ◽  
D. I. Matveychuk ◽  
A. S. Dernova
Keyword(s):  

1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


Sign in / Sign up

Export Citation Format

Share Document