Spatial Variation of Aquifer Parameters from Coastal Aquifers of Sindhudurg District, Maharashtra Using Pore-water Resistivity and Bulk Resistivity

2018 ◽  
Vol 1 (1) ◽  
pp. 28-40
Author(s):  
Suneetha Naidu ◽  
Gautam Gupta

Estimation of hydraulic parameters in coastal aquifers is an important task in groundwater resource assessment and development. An attempt is made to estimate these parameters using geoelectrical data in combination with pore-water resistivity of existing wells. In the present study, 29 resistivity soundings were analysed along with 29 water samples, collected from the respective dug wells and boreholes, in order to compute hydraulic parameters like formation factor, porosity, hydraulic conductivity and transmissivity from coastal region of north Sindhudurg district, Maharashtra, India. The result shows some parts of the study area reveal relatively high value of hydraulic conductivity, porosity and transmissivity. Further, a negative correlation is seen between hydraulic conductivity and bulk resistivity. The hydraulic conductivity is found to vary between 0.014 and 293 m/day, and the transmissivity varied between 0.14 and 11,722 m2/day. The transmissivity values observed here are in good correspondence with those obtained from pumping test data of Central Ground Water Board. These zones also have high aquifer thickness and therefore characterize high potential within the water-bearing formation. A linear, positive relationship between transverse resistance and transmissivity is observed, suggesting increase in transverse resistance values indicate high transmissivity of aquifers. These relations will be extremely vital in characterization of aquifer system, especially from crystalline hard rock area.

2021 ◽  
Vol 30 (1) ◽  
pp. 43-52
Author(s):  
Kenechukwu A. Ifeanyichukwu ◽  
Elizabeth Okeyeh ◽  
Okechukwu E. Agbasi ◽  
Onwe I. Moses ◽  
Ogechukwu Ben-Owope

In Nnewi, Anambra State Nigeria, twenty vertical electrical sounding (VES) were performed to delineate vulnerability and transmissivity of identified aquifer within the study area. Hydraulic parameters (transverse resistance, longitudinal conductivity, hydraulic conductivity and transmissivity) were delineated from geoelectrical parameters (depth, thickness, and apparent resistance). The geo- parameters of the aquifer: apparent resistance from 1000.590 to 1914.480, thickness from 42.850 – 66.490 m and 65.530 to 100.400 m of depth. The estimated hydraulic parameters of the aquifers are transverse resistance 54264.383 - 104568.898 Ωm, longitudinal conductance 0.029 – 0.062 mho, hydraulic conductivity 0.664 – 2.015 m/day and transmis- sivity between 4.167 and 13.963 m2/day. All aquifers have poor protective capacity, 40 percent of the aquifers have low classification with smaller withdrawal potential for local groundwater supply, while 60 percent of the delineated aquifer has intermediate classification and withdrawal potential for local groundwater supply. Due to its groundwater supply potential and protective capacity, the eastern part of the study area has stronger groundwater potential.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1689-1702 ◽  
Author(s):  
Olivar A. L. de Lima

The upper clastic sediments in the Recôncavo‐Tucano basin comprise a multilayer aquifer system of Jurassic age. Its groundwater is normally fresh down to depths of more than 1000 m. Locally, however, there are zones producing high salinity or sulfur geothermal waters. In other areas, the system is being exploited heavily to support a petrochemical center and related industries. Analysis of electrical logs of more than 150 wells enabled the identification of the most typical sedimentary structures and the gross geometries for the sandstone units in selected areas of the basin. Based on this information, the thick sands are interpreted as coalescent point bars and the shales as flood plain deposits of a large fluvial environment. The resistivity logs and core laboratory data are combined to develop empirical equations relating aquifer porosity and permeability to log‐derived parameters such as formation factor and cementation exponent. Temperature logs of 15 wells were useful to quantify the water leakage through semiconfining shales. The groundwater quality was inferred from spontaneous potential (SP) log deflections under control of chemical analysis of water samples. An empirical chart is developed that relates the SP‐derived water resistivity to the true water resistivity within the formations. The patterns of salinity variation with depth inferred from SP logs were helpful in identifying subsurface flows along major fault zones, where extensive mixing of water is taking place. A total of 49 vertical Schlumberger resistivity soundings aid in defining aquifer structures and in extrapolating the log derived results. Transition zones between fresh and saline waters have also been detected based on a combination of logging and surface sounding data. Ionic filtering by water leakage across regional shales, local convection and mixing along major faults and hydrodynamic dispersion away from lateral permeability contrasts are the main mechanisms controlling the observed distributions of salinity and temperature within the basin.


2016 ◽  
Vol 33 (8) ◽  
pp. 2546-2564 ◽  
Author(s):  
Ismail Abd-Elaty ◽  
Hany Farhat Abd Elhamid ◽  
Akbar Javadi

Purpose The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers. Design/methodology/approach The numerical model SEAWAT is validated and applied to a hypothetical case (Henry problem) and a real case study (Biscayne aquifer, Florida, USA) for different values of hydraulic parameters including; hydraulic conductivity, porosity, dispersion, diffusion, fluid density and solute concentration. The dimensional analysis technique is used to correlate these parameters with the intrusion length. Findings The results show that the hydraulic parameters have a clear effect on saltwater intrusion as they increase the intrusion in some cases and decrease it in some other cases. The results indicate that changing hydraulic parameters may be used as a control method to protect coastal aquifers from saltwater intrusion. Practical implications The results of the application of the model to the Biscayne aquifer in Florida showed that the intrusion can be reduced to 50 percent when the hydraulic conductivity is reduced to 50 percent. Decreasing hydraulic conductivity by injecting some relatively cheap materials such as bentonite can help to reduce the intrusion of saltwater. So the saltwater intrusion can be reduced with relatively low cost through changing some hydraulic parameters. Originality/value A relationship to calculate intrusion length in coastal aquifer is developed and the impact of different hydraulic parameters on saltwater intrusion is highlighted. Control of saltwater intrusion using relatively cheap method is presented.


2020 ◽  
Vol 4 (2) ◽  
pp. 99-102
Author(s):  
Johnson C. Ibuot ◽  
Moses M. M. Ekpa ◽  
Doris O. Okoroh ◽  
Aniefiok S. Akpan Emmanuel T. Omeje

Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.


Author(s):  
Dian Darisma ◽  
Ferdy Fernanda ◽  
Muhammad Syukri

Lam Apeng is a village with a majority of people living as farmers, which causes the need of water for agriculture is increasing. The water demand in this area continues to increase as the population increases, for various purposes. The objective of this study is to determine the distribution of the groundwater layer using the electrical resistivity method and to determine groundwater potential using hydraulic parameters. This research is conducted using 2 measurement line with a length of each line is 112 meters and distances of each electrode is 2 meters. The data invert using Res2Dinv software to obtain 2D subsurface lithology subsurface. At line 1, the aquifer (sand) layer is located in the second layer with a rock resistivity value of 12 Ωm - 18.6 Ωm at a depth of 8 m - 18 m. At line 2, the aquifer (sand) layer is also located in the second layer with a resistivity value of 4.6 Ωm - 18 Ωm at a depth of 5 m – 12 m. Based on the interpretation of the two measurement lines, it can be concluded that the type of aquifer in the research site is a semi unconfined aquifer. In this study, hydraulic parameters (hydraulic conductivity, longitudinal conductance, transverse resistance, and transmissivity) was calculated based on the resistivity value and the thickness of the aquifer layer. The average resistivity of the aquifer layer used is 15.3 Ωm and 11.3 Ωm, respectively for line 1 and line 2, indicating that the aquifer was moderately corrosive. Longitudinal conductance values are 0.65 Ω-1 and 0.62 Ω-1 which indicated moderate protective capacity. The transmissivity values are 6.78 m2/dayand 4.77 m2/day, which indicates that the designation in this area is low and the groundwater potential is local or only for personal consumption.


2021 ◽  
Author(s):  
Arezou Dodangeh ◽  
Mohammad Mahdi Rajabi ◽  
Marwan Fahs

<p>In coastal aquifers, we face the problem of salt water intrusion, which creates a complex flow field. Many of these coastal aquifers are also exposed to contaminants from various sources. In addition, in many cases there is no information about the characteristics of the aquifer. Simultaneous identification of the contaminant source and coastal aquifer characteristics can be a challenging issue. Much work has been done to identify the contaminant source, but in the complex velocity field of coastal aquifer, no one has resolved this issue yet. We want to address that in a three-dimensional artificial coastal aquifer.</p><p>To achieve this goal, we have developed a method in which the contaminant source can be identified and the characteristics of the aquifer can be estimated by using information obtained from observation wells. First, by assuming the input parameters required to simulate the contaminant transfer to the aquifer, this three-dimensional coastal aquifer that is affected by various phenomena such as seawater intrusion, tides, shore slope, rain, discharge and injection wells, is simulated and the time series of the output parameters including head, salinity and contaminant concentration are estimated. In the next step, with the aim of performing inverse modeling, random values ​​are added to the time series of outputs obtained at specific points (points belonging to observation wells) in order to rebuilt the initial conditions of the problem to achieve the desired unknowns (contaminant source and aquifer characteristics). The unknowns estimated in this study are the contaminant source location (x, y, z), the initial contaminant concentration, the horizontal and vertical hydraulic conductivity of the aquifer. SEAWAT model in GMS software environment has been used to solve the equations of flow and contaminant transfer and simulate a three-dimensional coastal aquifer. Next, for reverse modeling, one of the Bayesian Filters subset (ensemble Kalman filter) has been used in the Python programming language environment. Also, to reduce the code run time, the neural network model is designed and trained for the SEAWAT model.</p><p>This method is able to meet the main purpose of the study, namely estimating the value ​​of unknown input parameters, including the contaminant source location, the initial contaminant concentration, the horizontal and vertical hydraulic conductivity of the aquifer. In addition, that makes it possible to achieve a three-dimensional numerical model of the coastal aquifer that can be used as a benchmark to examine more accurately the impact of different phenomena simultaneously. In conclusion, we have developed an algorithm which can be used in the world's coastal aquifers to identify the contaminant source and estimate its characteristics.</p><p> </p><p>Key words: coastal aquifer, seawater intrusion, contaminants, groundwater, flow field, parameter estimation, ensemble kalman filter</p>


2019 ◽  
Vol 2 (1) ◽  
pp. 113-124
Author(s):  
Etzar Gómez ◽  
Viktor Broman ◽  
Torleif Dahlin ◽  
Gerhard Barmen ◽  
Jan-Erik Rosberg

Abstract Resistivity data constitute the largest part of the available information to assess the hydrogeological characteristics of the aquifer system near Oruro, in the central part of the Bolivian Altiplano. Two aquifers are part of this system; top unconsolidated sediments storing fresh water in their granular voids, overlying fractured hard rock formations where saline water was detected in connection to some faults. This study proposes an indirect and cost-effective way to estimate aquifer hydraulic properties for the groundwater management in the region. Hydraulic conductivity and transmissivity in the top aquifer were estimated using an empirical linear relationship between hydraulic conductivity and resistivity. This latter parameter, as well as the aquifer thickness, were obtained from the inverted models corresponding to the geoelectrical tests performed in the study area (electrical resistivity tomography, transient electromagnetic soundings and vertical electrical soundings). The highest estimated transmissivity values are ∼4.0 × 10−2 m2/s located in the centre of the study area, the lowest values are ∼3.4 × 10−3 m2/s, located around thermal intrusions to the south and where the top of the bedrock is shallow (∼20 m depth) to the west. The methodology presented in this study makes wider use of resistivity measurements to identify promising groundwater production sites.


Sign in / Sign up

Export Citation Format

Share Document