scholarly journals High Capacity and Fast Kinetics of Potassium-Ion Batteries Boosted by Nitrogen-Doped Mesoporous Carbon Spheres

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiefeng Zheng ◽  
Yuanji Wu ◽  
Yong Tong ◽  
Xi Liu ◽  
Yingjuan Sun ◽  
...  

AbstractIn view of rich potassium resources and their working potential, potassium-ion batteries (PIBs) are deemed as next generation rechargeable batteries. Owing to carbon materials with the preponderance of durability and economic price, they are widely employed in PIBs anode materials. Currently, porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances. Herein, nitrogen-doped mesoporous carbon spheres (MCS) are synthesized by a facile hard template method. The MCS demonstrate larger interlayer spacing in a short range, high specific surface area, abundant mesoporous structures and active sites, enhancing K-ion migration and diffusion. Furthermore, we screen out the pyrolysis temperature of 900 °C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances. In detail, the optimized MCS-7-900 electrode achieves high rate capacity (107.9 mAh g−1 at 5000 mA g−1) and stably brings about 3600 cycles at 1000 mA g−1. According to electrochemical kinetic analysis, the capacitive-controlled effects play dominant roles in total storage mechanism. Additionally, the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.

Carbon ◽  
2018 ◽  
Vol 127 ◽  
pp. 85-92 ◽  
Author(s):  
Jian-Gan Wang ◽  
Hongzhen Liu ◽  
Huanhuan Sun ◽  
Wei Hua ◽  
Huwei Wang ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiefeng Zheng ◽  
Yuanji Wu ◽  
Yingjuan Sun ◽  
Jianhua Rong ◽  
Hongyan Li ◽  
...  

Abstract Potassium ion batteries (PIBs) with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems (EESs). However, there are still some obstacles like large size of K+ to commercial PIBs applications. Therefore, rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+ accommodated and fast diffused. Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties. Accordingly, quite a few recent anode materials with different dimensions in PIBs have been reported, mainly involving in carbon materials, metal-based chalcogenides (MCs), metal-based oxides (MOs), and alloying materials. Among these anodes, nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation. Besides, MCs, MOs, and alloying materials with nanostructures can effectively alleviate their stress changes. Herein, these materials are classified into 0D, 1D, 2D, and 3D. Particularly, the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined. Meanwhile, some strategies are proposed to deal with the current disadvantages. Hope that the readers are enlightened from this review to carry out further experiments better.


2012 ◽  
Vol 554-556 ◽  
pp. 778-782 ◽  
Author(s):  
Chao Liu ◽  
Yong Qi Hu ◽  
Yi Feng Yu ◽  
Yue Zhang ◽  
Yan Yan Wang ◽  
...  

Nitrogen-doped mesoporous carbon materials have been synthesized by using melamine-formaldehyde resin as carbon precursor and SBA-15 as a removable template. The structure of the materials was investigated by X-ray diffraction, BET specific surface area analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. X-ray and BET studies confirmed that a pore nanostructure is inherited from the silica templates. Fourier transform infrared spectroscopy analysis showed N atoms are strongly bonded in the carbon structure in heterocycles or nitrile functions. These mesoporous nitrogen-doped carbon materials exhibits textural properties with BET surface areas ranging between 400 and 600 m2/g and uniform pore size(3.9 nm). The mechanism of carbonization process is studied by thermogravimetric analysis. The ratio of melamine/formaldehyde plays an important role during the carbonization process for the surface areas and textural properties, and element analysis reveals that the nitrogen content of the mesoporous carbon materials is as high as 10wt%.


2017 ◽  
Vol 245 ◽  
pp. 279-286 ◽  
Author(s):  
Chunhai Jiang ◽  
Jingxia Wang ◽  
Zhonghui Chen ◽  
Zhiyang Yu ◽  
Zhenyu Lin ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 406 ◽  
Author(s):  
Masayasu Nishi ◽  
Shih-Yuan Chen ◽  
Hideyuki Takagi

The Cs-promoted Ru nanocatalysts supported on mesoporous carbon materials (denoted as Cs-Ru/MPC) and microporous activated carbon materials (denoted as Cs-Ru/AC) were prepared for the sustainable synthesis of ammonia under mild reaction conditions (<500 °C, 1 MPa). Both Ru and Cs species were homogeneously impregnated into the mesostructures of three commercial available mesoporous carbon materials annealed at 1500, 1800 and 2100 °C (termed MPC-15, MPC-18 and MPC-21, respectively), resulting in a series of Cs-Ru/MPC catalysts with Ru loadings of 2.5–10 wt % and a fixed Cs loading of 33 wt %, corresponding to Cs/Ru molar ratios of 2.5–10. However, the Ru and Cs species are larger than the pore mouths of microporous activated carbon (shortly termed AC) and, as a consequence, were mostly aggregated on the outer surface of the Cs-Ru/AC catalysts. The Cs-Ru/MPC catalysts are superior to the Cs-Ru/AC catalyst in catalysing mild ammonia synthesis, especially for the 2.5Cs-10Ru/MPC-18 catalyst with a Ru loading of 10 wt % and a Cs/Ru ratio of 2.5, which exhibited the highest activity across a wide SV range. It also showed an excellent response and stability during cycling tests over a severe temperature jump in a short time, presumably due to the open mesoporous carbon framework and suitable surface concentrations of CsOH and metallic Ru species at the catalytically active sites. This 2.5Cs-10Ru/MPC-18 catalyst with high activity, fast responsibility and good stability has potential application in intermittently variable ammonia synthesis using CO2-free hydrogen derived from electrolysis of water using renewable energy with fast variability.


2018 ◽  
Vol 6 (46) ◽  
pp. 23318-23325 ◽  
Author(s):  
Hehe Zhang ◽  
Hanna He ◽  
Jingyi Luan ◽  
Xiaobing Huang ◽  
Yougen Tang ◽  
...  

Carbon materials continue to be a focus of rapid innovative application in potassium-ion batteries (KIBs) owing to their abundant resources.


Sign in / Sign up

Export Citation Format

Share Document