scholarly journals Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuci Wang ◽  
Kai Jiang ◽  
Jiaren Du ◽  
Licheng Zheng ◽  
Yike Li ◽  
...  

AbstractNear-infrared (NIR), particularly NIR-containing dual-/multi-mode afterglow, is very attractive in many fields of application, but it is still a great challenge to achieve such property of materials. Herein, we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots (CDs) through in situ embedding o-CDs (being prepared from o-phenylenediamine) into cyanuric acid (CA) matrix (named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) of o-CDs, respectively. In addition, the formation of covalent bonds between o-CDs and CA, and the presence of multiple fixation and rigid effects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA, it is completely covered by the green TADF during directly observing. The NIR RTP signal, however, can be readily captured if an optical filter (cut-off wavelength of 600 nm) being used. By utilizing these unique features, the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally, the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances.

2018 ◽  
Author(s):  
Aleksander M. Shakhov ◽  
Artyom A. Astafiev ◽  
Alina A. Osychenko ◽  
Maria S. Syrchina ◽  
Viktor A. Nadtochenko

Owning to excellent optical properties and high biocompatibility carbon dots (CDs) have drawn increasing attention and have been widely applied as imaging agents for various bio-applications. Here we report a strategy for live-cell fluorescent bioimaging based on in situ synthesis of CDs within cells by tightly focused femtosecond laser pulses. Laser-produced carbon dots exhibit bright excitation-dependent fluorescence and are highly two-photon active under near infrared femtosecond excitation, thus demonstrating a potential for two-photon fluorescence imaging. The Raman spectra of fluorescent centers show strong D (1350 cm-1) and G (1590 cm-1) bands, thus suggesting that they are composed of carbon dots with sp2-hybridized core. Using Mouse GV oocytes as a model system we examine cytotoxicity and demonstrate the possibility of long-term fluorescent intracellular tracking of the laser-produced CDs. Created virtually in any point of the live cell, CD-based fluorescent μm-sized markers demonstrate high structural stability and retain bright fluorescence many hours after formation. Our results point to laser-produced fluorescent CDs as a highly-potent tool for cell cycle tracking, culture cell marking and probing intracellular movements.


2021 ◽  
pp. 096703352110079
Author(s):  
Agustan Alwi ◽  
Roger Meder ◽  
Yani Japarudin ◽  
Hazandy A Hamid ◽  
Ruzana Sanusi ◽  
...  

Eucalyptus pellita F. Muell. has become an important tree species in the forest plantations of SE Asia, and in Malaysian Borneo in particular, to replace thousands of hectares of Acacia mangium Willd. which has suffered significant loss caused by Ceratocystis manginecans infection in Sabah, Malaysia. Since its first introduction at a commercial scale in 2012, E. pellita has been planted in many areas in the region. The species replacement requires new silvicultural practices to induce the adaptability of E. pellita to grow in the region and this includes relevant research to optimise such regimes as planting distance, pruning, weeding practices and nutrition regimes. In this present study, the nutritional status of the foliage was investigated with the aim to develop near infrared spectroscopic calibrations that can be used to monitor and quantify nutrient status, particularly total foliar nitrogen (N) and phosphorus (P) in the field. Spectra acquired on fresh foliage in situ on the tree could be used to predict N and P with accuracy suitable for operational decision-making regards fertiliser application. If greater accuracy is required, spectra acquired on dry, milled foliage could be used to predict N and P within a relative error of 10% (R2c, r2CV, RMSEP, RPD = 0.77, 0.71, 0.02 g 100/g, 1.9 for foliar P and = 0.90, 0.88, 0.21 g 100/g, 3.0 for foliar N on dry, milled foliage). The ultimate application of this is in situ nutrient monitoring, particularly to aid longitudinal studies in fertiliser trial plots and forest operations, as the non-destructive nature of NIR spectroscopy would enable regular monitoring of individual leaves over time without the need to destructively sample them. This would aid the temporal and spatial analysis of field data.


2021 ◽  
Vol 1157 ◽  
pp. 338394
Author(s):  
Xiao-Yue Tang ◽  
Yi-Ming Liu ◽  
Xiao-Lin Bai ◽  
Hao Yuan ◽  
Yi-Kao Hu ◽  
...  

Author(s):  
Yihao Zheng ◽  
Haopeng Wei ◽  
Ping Liang ◽  
Xiaokai Xu ◽  
Xingcai Zhang ◽  
...  

2021 ◽  
Author(s):  
Umamahesh Balijapalli ◽  
Ryo Nagata ◽  
Nishiki Yamada ◽  
Hajime Nakanotani ◽  
Masaki Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document