Biosorption of Cu(II) Ions by Kelps, Large Brown Algae Seaweeds, Saccharina japonica and Saccharina sculpera

2018 ◽  
Vol 4 (4) ◽  
pp. 455-460 ◽  
Author(s):  
Shunsuke Kuzuhara ◽  
Katsuyuki Kudo ◽  
Osamu Terakado
2015 ◽  
Vol 182 (3) ◽  
pp. 258-268
Author(s):  
Natalia M. Aminina

Data on stock and distribution of commercial and prospective for harvesting brown algae at the coast of Russian Far East are presented and compared. Their total biomass in the traditional harvesting grounds prevails 3.5 million tons. Saccharina japonica, Saccharina gurjanovae, Cystoseira crassipes have the highest biomass. However, taking into account both the stock and chemical composition of the tissues, Saccharina bongardiana, Arthrothamnus bifidus, and Eualaria fistulosa are the most profitable for harvesting and processing. The algae from the coastal waters of south-western Sakhalin have generally higher content of valuable proteins and minerals, but the content of mannitol and alginic acid is higher in the algae from the coastal waters of Kamchatka and Primorye. Contamination of the algae by toxic elements is considered, as well: in general, the safety indicators allow to regard all basic harvesting grounds of brown algae in the Far Eastern waters as suitable for commercial exploitation, though insignificant excess of the permissible level of lead (0.5 mg/kg) is detected for the brown algae from the coastal waters of Primorye and several sites in the Aniva Bay (southern Sakhalin).


Trudy VNIRO ◽  
2020 ◽  
Vol 181 ◽  
pp. 223-234
Author(s):  
L.S. Abramova ◽  
◽  
V.V. Gershunskaya ◽  
A.V. Kozin ◽  
D.A. Bondarenko ◽  
...  

The ability of various marine organisms, especially algae and invertebrates, to accumulate arsenic in high concentrations can pose a threat to public health when consumed. It is known from the literature that inorganic arsenic compounds (arsenites and arsenates) are the most toxic, in comparison with methylated forms of the element, and especially with complex organic compounds (arsenobetain, arsenocholine, tetramethylarsonium, arsenoriboses), which are considered non-toxic for live organisms. Monitoring of safety indicators of aquatic biological resources in the main commercial basins of the Russian Federation has shown that the most common excess of total arsenic content is characteristic for algae. According to TR CU 021/2011, the total arsenic content in algae should be 5 mg / kg and the established norm without separation of organic and inorganic arsenic compounds creates a barrier to the rational use of seafood. In this regard, the justification of the norms for the content of inorganic arsenic in algae and the assessment of their toxicity is a very urgent problem. Study of the samples of commercial brown algae Saccharina (=Laminaria) japonica and its derivates with ICP-MS, HPLC–MS-ISP methods, the maximum permissible level of arsenic was found to be exceeded, but the most toxic inorganic forms made up from 6 to14 % of the total amount of arsenic in the raw material. Acute toxicity on laboratory animals (rats) was studied and the absence of toxic effects was shown when an oral suspension containing high doses of arsenic was administered. Repeated administration of the same substances to laboratory mice of the CD 1 line has shown no toxic effects even after multiple doses of arsenic isolated from algae.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 564 ◽  
Author(s):  
Nègre ◽  
Aite ◽  
Belcour ◽  
Frioux ◽  
Brillet-Guéguen ◽  
...  

Understanding growth mechanisms in brown algae is a current scientific and economic challenge that can benefit from the modeling of their metabolic networks. The sequencing of the genomes of Saccharina japonica and Cladosiphon okamuranus has provided the necessary data for the reconstruction of Genome–Scale Metabolic Networks (GSMNs). The same in silico method deployed for the GSMN reconstruction of Ectocarpus siliculosus to investigate the metabolic capabilities of these two algae, was used. Integrating metabolic profiling data from the literature, we provided functional GSMNs composed of an average of 2230 metabolites and 3370 reactions. Based on these GSMNs and previously published work, we propose a model for the biosynthetic pathways of the main carotenoids in these two algae. We highlight, on the one hand, the reactions and enzymes that have been preserved through evolution and, on the other hand, the specificities related to brown algae. Our data further indicate that, if abscisic acid is produced by Saccharina japonica, its biosynthesis pathway seems to be different in its final steps from that described in land plants. Thus, our work illustrates the potential of GSMNs reconstructions for formalizing hypotheses that can be further tested using targeted biochemical approaches.


PROTOPLASMA ◽  
2016 ◽  
Vol 254 (1) ◽  
pp. 547-555 ◽  
Author(s):  
Nana Kinoshita ◽  
Chikako Nagasato ◽  
Taizo Motomura

2020 ◽  
Author(s):  
Yoran Le Strat ◽  
Thierry Tonon ◽  
Catherine Leblanc ◽  
Agnès Groisillier

AbstractMacroalgae (or seaweeds) are the dominant primary producers in marine vegetated coastal habitats and largely contribute to global ocean carbon fluxes. They also represent attractive renewable production platforms for biofuels, food, feed, and bioactives, notably due to their diverse and peculiar polysaccharides and carbohydrates. Among seaweeds, brown algae produce alginates and sulfated fucans as constituents of their cell wall, and the photoassimilates laminarin and mannitol for carbon storage. Availability of brown algal genomes, including those of the kelp Saccharina japonica and the filamentous Ectocarpus sp., has paved the way for biochemical characterization of recombinant enzymes involved in their polysaccharide and carbohydrates synthesis, notably mannitol. Biosynthesis of mannitol in brown algae starts from fructose-6-phospate, which is converted into mannitol-1-phosphate (M1P), and this intermediate is then hydrolysed by a haloacid dehalogenase type M1P phosphatase (M1Pase) to produce mannitol. We report here the biochemical characterization of a second M1Pase in Ectocarpus sp after heterologous expression in Escherichia coli. (EsM1Pase1). Our results show that both Ectocarpus M1Pases were redox sensitive, with EsM1Pase1 being active only in presence of reducing agent. Such catalytic properties have not been observed for any of the M1Pase characterized so far. EsM1Pases were specific to mannitol, in contrast to S. japonica M1Pases that can use other phosphorylated sugars as substrates. Finally, brown algal M1Pases grouped into two well-supported clades, with potential different subcellular localization and physiological role(s) under diverse environmental conditions and/or stages of life cycle.


2017 ◽  
Vol 63 (1) ◽  
pp. 39-46 ◽  
Author(s):  
I.D. Makarenkova ◽  
N.K. Akhmatova ◽  
S.P. Ermakova ◽  
N.N. Besednova

The effects of various sulfated polysaccharides of brown algae Fucus evanescens, Saccharina cichorioides and Saccharina japonica on the morphofunctional changes of dendritic cells have been investigated using flow cytometry and phase-contrast microscopy. The dendritic cells are characterized by larger sizes, vacuolated cytoplasm, eccentrically located nucleus, and also by the presence of numerous cytoplasmic pseudopodia of various shapes. They express surface markers, indicating their maturation (CD83, CD11c, HLA-DR, CD86). Increased production of immunoregulatory (IL-12) and proinflammatory TNF-a, IL-6) cytokines (by dendritic cells polarizes the development of the Th-1 type immune response.


Sign in / Sign up

Export Citation Format

Share Document