scholarly journals A Positive Combinatorial Formula for the Complexity of the $q$-Analog of the $n$-Cube

10.37236/2389 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Murali Krishna Srinivasan

The number of spanning trees of a graph $G$ is called the complexity of $G$. A classical result in algebraic graph theory explicitly diagonalizes the Laplacian of the $n$-cube $C(n)$  and yields, using the Matrix-Tree theorem, an explicit formula for $c(C(n))$. In this paper we explicitly block diagonalize the Laplacian of the $q$-analog $C_q(n)$ of $C(n)$ and use this, along with the Matrix-Tree theorem, to give a positive combinatorial formula for $c(C_q(n))$. We also explain how setting $q=1$ in the formula for $c(C_q(n))$ recovers the formula for $c(C(n))$.

2015 ◽  
Vol 92 (3) ◽  
pp. 365-373 ◽  
Author(s):  
JUSTINE LOUIS

We consider the number of spanning trees in circulant graphs of ${\it\beta}n$ vertices with generators depending linearly on $n$. The matrix tree theorem gives a closed formula of ${\it\beta}n$ factors, while we derive a formula of ${\it\beta}-1$ factors. We also derive a formula for the number of spanning trees in discrete tori. Finally, we compare the spanning tree entropy of circulant graphs with fixed and nonfixed generators.


2010 ◽  
Vol 19 (06) ◽  
pp. 765-782 ◽  
Author(s):  
OLIVER T. DASBACH ◽  
DAVID FUTER ◽  
EFSTRATIA KALFAGIANNI ◽  
XIAO-SONG LIN ◽  
NEAL W. STOLTZFUS

A classical result states that the determinant of an alternating link is equal to the number of spanning trees in a checkerboard graph of an alternating connected projection of the link. We generalize this result to show that the determinant is the alternating sum of the number of quasi-trees of genus j of the dessin of a non-alternating link. Furthermore, we obtain formulas for coefficients of the Jones polynomial by counting quantities on dessins. In particular, we will show that the jth coefficient of the Jones polynomial is given by sub-dessins of genus less or equal to j.


2010 ◽  
Vol 20 (1) ◽  
pp. 11-25 ◽  
Author(s):  
HODA BIDKHORI ◽  
SHAUNAK KISHORE

The line graph G of a directed graph G has a vertex for every edge of G and an edge for every path of length 2 in G. In 1967, Knuth used the Matrix Tree Theorem to prove a formula for the number of spanning trees of G, and he asked for a bijective proof [6]. In this paper, we give a bijective proof of Knuth's formula. As a result of this proof, we find a bijection between binary de Bruijn sequences of degree n and binary sequences of length 2n−1. Finally, we determine the critical groups of all the Kautz graphs and de Bruijn graphs, generalizing a result of Levine [7].


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.


1998 ◽  
Vol 179 (1-3) ◽  
pp. 155-166 ◽  
Author(s):  
L. Petingi ◽  
F. Boesch ◽  
C. Suffel

2016 ◽  
Vol 25 (09) ◽  
pp. 1641005
Author(s):  
Jun Ge ◽  
Lianzhu Zhang

In this note, we first give an alternative elementary proof of the relation between the determinant of a link and the spanning trees of the corresponding Tait graph. Then, we use this relation to give an extremely short, knot theoretical proof of a theorem due to Shank stating that a link has component number one if and only if the number of spanning trees of its Tait graph is odd.


Sign in / Sign up

Export Citation Format

Share Document