Porous Structure by X-Ray Computed Tomography and Sound Absorption in Pervious Concretes with Air Cooled Blast Furnace Slag as Coarse Aggregate

2019 ◽  
Vol 47 (3) ◽  
pp. 271-276 ◽  
Author(s):  
J. D. Rios ◽  
C. Arenas ◽  
H. Cifuentes ◽  
B. Peceño ◽  
C. Leiva
Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2131 ◽  
Author(s):  
G.U. Ryu ◽  
G.M. Kim ◽  
Hammad R. Khalid ◽  
H.K. Lee

Blast furnace slag, an industrial by-product, is emerging as a potential raw material to synthesize hydroxyapatite and zeolite. In this study, the effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite from blast furnace slag were investigated. Specimens were synthesized at different temperatures (room temperature, 50, 90, 120, or 150 °C). The synthesized specimens were analyzed qualitatively and quantitatively via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET/BJH, and scanning electron microscopy/energy dispersive using X-ray analysis (SEM/EDX). It was found that the hydroxyapatite phase was synthesized at all the reaction temperatures, while faujasite type zeolite appeared in the specimens synthesized at 90 and 120 °C. Moreover, faujasite was replaced by hydroxysodalite in the specimens synthesized at 150 °C. Additionally, the crystals of the hydroxyapatite tended to become larger and total crystallinity increased as the reaction temperature increased.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 843
Author(s):  
Yuji Miyazaki ◽  
Takeshi Watanabe ◽  
Yuji Yamada ◽  
Chikanori Hashimoto

Since high quality natural aggregates are becoming scarce, it is important that industrial recycled products and by-products are used as aggregates for concrete. In Japan, the use of recycled aggregate (RG) is encouraged. Since, strength and durability of recycled aggregate concrete is lower than that of normal aggregate concrete, the use of recycled aggregate has not been significant. In order to improve physical properties of concrete using recycled coarse aggregate, blast furnace slag sand has been proposed. Recently, blast furnace slag sand is expected to improve durability, freezing, and thawing damage of concrete in Japan. Properties of fresh and hardened concrete bleeding, compressive strength, and resistance to freezing and thawing which are caused by the rapid freezing and thawing test using liquid nitrogen is a high loader than the JIS A 1148 A method that were investigated. As a result, concrete using treated low-class recycled coarse aggregate and 50% or 30% replacement of crushed sand with blast furnace slag sand showed the best results, in terms of bleeding, resistance to freezing and thawing.


X-ray photoelectron spectrometry (X.p.s.) measures the kinetic energy of electrons photoejected from a solid surface by soft X-rays. The kinetic energy of the photoelectrons can be related to the binding energy that these electrons had originally in the solid. X.p.s. is a rather new technique for studying cements. It has been used recently in the surface analysis of C 3 S, C 2 S, C 3 A and blast-furnace slag grains during their hydration. Changes in chemical composition have been found as soon as the surface comes into contact with water, shown by a change in the shape, position an intensity of characteristic peaks like Ca 2p , Si 2p , O l8 and a reduction of characteristic ratios Ca/Si or Al/Si. A tentative interpretation of X.p.s. kinetic curves as a function of hydration time is presented.


2009 ◽  
Vol 50 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Tsuyoshi Yamashita ◽  
Kazuhiro Suzuki ◽  
Hideki Adachi ◽  
Souichiro Nishino ◽  
Yo Tomota

2014 ◽  
Vol 976 ◽  
pp. 246-250
Author(s):  
Reyna Sánchez-Ramírez ◽  
Manuela Diaz-Cruz ◽  
Sebastían Díaz de La Torre ◽  
Enrique Rocha-Rangel

In this work, they were produced and characterized cementing composites made with blast furnace slag replacement, for their use in the construction of oil wells. To this, slurries were prepared with a replacement of 20 and 30% slag, as well as a slurry with 100 % slag and a slurry with 100% H-cement were prepared. Starting materials were characterized by chemical analysis, X-ray diffraction and Fourier Transformed Infra Red. Slurries also were activated with sodium silicate in order to study theirs hydration kinetics, driving by isothermal calorimetry. These studies were complemented by the preparation of specimens of 4 X 4 X 16 cm to which they determine its compressive and bending strength during 2 and 28 days of curing. From the results it can be concluded that it was obtained a product that can be effectively used in the construction of oil wells.


2013 ◽  
Vol 99 (8) ◽  
pp. 532-541 ◽  
Author(s):  
Hiroyuki Tobo ◽  
Yoko Miyamoto ◽  
Keiji Watanabe ◽  
Michihiro Kuwayama ◽  
Tatsuya Ozawa ◽  
...  

2013 ◽  
Vol 641-642 ◽  
pp. 363-366 ◽  
Author(s):  
Wu Zhang ◽  
Li Zhang ◽  
Nai Xiang Feng

Abstract. Effect of oxidation on phase transformation in Ti-bearing blast furnace slag is studied. The slag is analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), EDX and metallographic microscope. The experiment results indelicate that the phase composition of the oxidized slag is simpler which are only rutile and glass phase. The titanaugite, Ti-rich diopside and perovskite phase are vanished and most of the Ti components were enriched in the rutile phase.


Sign in / Sign up

Export Citation Format

Share Document