Interaction of a Ceramic Casting Mold Material of the Al2O3–Al2O3 Composition with a Nickel-Based Superalloy

Author(s):  
Maxim S. Varfolomeev ◽  
Galina I. Shcherbakova
2016 ◽  
Vol 2016 (2016) ◽  
pp. 36-53
Author(s):  
Mahmoud Zawrah ◽  
Sayed A. Abdullah ◽  
Reham M. Khattab ◽  
Ibrahim Ibrahim

2021 ◽  
Vol 1033 ◽  
pp. 98-102
Author(s):  
Taha Waqar ◽  
Muhammad Azhar Ali Khan ◽  
Muhammad Asad ◽  
Faramarz Djavanroodi ◽  
Jamal Nayfeh

Additive manufacturing is a technology that is influencing every facet of manufacturing such as casting. 3D printing in particular has the potential to revolutionize castings in terms of precision and time taken in production. Patternless molds increase the efficiency of the casting process for large scale manufactured components. Therefore, ceramic based molds can be utilized for low temperature alloy parts such as mounting brackets. Nowadays, 3D printing technologies allow the direct printing of these molds. This is possible with the aid of CAD modelling of the casting mold which allows instant printing of patternless molds. The aim of this work is to introduce an approach to prepare a 3D design for a casting mold that can be manufactured using 3D printing technology. Mold design was made using Solidworks software according to standardized calculations from which cope and drag components were extracted. Candidates for potential mold material are highlighted along with advantages & limitations of utilizing 3D printing methodology.


2011 ◽  
Vol 189-193 ◽  
pp. 2581-2585
Author(s):  
Hai Hua Wu ◽  
Zi Fan Fang

In this paper, an indirect solid freeform fabrication (ISFF) process was developed to rapidly fabricate ceramic casting molds by combining stereolithography with gelcasting technology. To realize this method, the stereolithography apparatus was used to fabricate a resin mold, and then aqueous ceramic slurry was cast into the resin mold and in situ polymerized to form a wet green body of ceramic casting mold. Freeze drying, pyrolyzing and sintering completed the manufacturing route. Finally, the ceramic casting mold with complex ceramic cores was obtained, and a car radiator with deep grooves was produced to verify the validity and feasibility of the method.


Author(s):  
C. Ortner ◽  
L. Martins Demuner ◽  
M. Schuster ◽  
O. Lang ◽  
F. Ramstorfer

2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2020 ◽  
Vol 50 (5) ◽  
pp. 296-302
Author(s):  
O. G. Prikhod’ko ◽  
V. B. Deev ◽  
E. S. Prusov ◽  
A. I. Kutsenko

2014 ◽  
Vol 69 (1) ◽  
pp. 46-53 ◽  
Author(s):  
R. L. Peng ◽  
J.-M. Zhou ◽  
S. Johansson ◽  
A. Bellinius ◽  
V. Bushlya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document