Suitability of electrical discharge machining debris particles for usage as a powder for selective laser melting: an explorative study

2019 ◽  
Vol 4 (4) ◽  
pp. 443-449
Author(s):  
Kai Oßwald ◽  
Jörg Woidasky ◽  
Anika Marie Hoffmann ◽  
Marco Moser
Author(s):  
Ashwin Polishetty ◽  
Guy Littlefair

Titanium is known for its poor machinability characteristics due to its low thermal conductivity and high chemical reactivity. This article explores the machinability characteristics of selective laser melting (SLM) titanium alloy Ti-6Al-4V using wire cut electrical discharge machining (WEDM). For titanium alloys, exploring non-traditional machining operation such as WEDM is critical for a material failure or success in a design application. The research is to study the effect of parameters such as servo voltage, pulse on/off, and machining speed with respect to wire tension and wire feed rate on machinability. The outputs under consideration for evaluating machinability are metal removal rate (MRR) and surface finish under minimal interruption due to wire snaps. The article concludes by identifying the optimal factors responsible to produce an efficient and accurate cut with a minimum downtime.


Author(s):  
Surendar Ganesan ◽  
Balasubramanian Esakki ◽  
Lung-Jieh Yang ◽  
D Rajamani ◽  
M Silambarsan ◽  
...  

The development of a flapping wing microaerial vehicle mechanism with a high strength-to-weight ratio to withstand high flapping frequency is of significant interest in aerospace applications. The traditional manufacturing methods such as injection moulding and wire-cut electrical discharge machining suffer from high cost, labour intensiveness, and time-to-market. However, the present disruptive additive manufacturing technology is considered a viable replacement for manufacturing micromechanism components. Significantly to withstand high cyclic loads, metal-based high strength-to-weight ratio flapping wing microaerial vehicle components are the need of the hour. Hence, the present work focused on the fabrication of flapping wing microaerial vehicle micromechanism components using selective laser melting with AlSi10Mg alloy. The manufactured micromechanism components attained 99% of dimensional accuracy, and the total weight of the Evans mechanism assembly is 4 g. The scanning electron microscopy analysis revealed the laser melting surface characteristics of the Al alloy. The assembled mechanism is tested in static and dynamic environments to ensure structural rigidity. Aerodynamic forces are measured using a wind tunnel setup, and 7.5 lift and 1.2 N thrust forces are experienced that will be sufficient enough to carry a payload of 1 g camera on-board for surveillance missions. The study suggested that the metal additive manufacturing technology is a prominent solution to realize the micromechanism components effortlessly compared to conventional subtractive manufacturing.


2016 ◽  
Vol 106 (06) ◽  
pp. 430-438
Author(s):  
K. Prof. Oßwald ◽  
D. Murnberger ◽  
T. Kappler ◽  
G. Sedlmayr

Diese Untersuchung beschäftigt sich mit einer in den westlichen Industrienationen kaum bekannten Variante des Drahterodierens. Es wird zunächst ein Überblick über die Merkmale der Technologie (beispielsweise Aufbau, verwendeter Draht, Prozessflüssigkeit) gegeben, die sich teilweise deutlich von der konventionellen Technik unterscheiden. Des Weiteren werden die Verläufe von Strom und Spannung des Prozesses gemessen sowie die gefertigten Werkstückoberflächen untersucht.   This study deals with a variant of Wire Electrical Discharge Machining that is barely known in western industrialized countries. An overview of this technology‘s characteristics (setup, wire, fluid) is given, some of which are significantly different from conventional wire EDM (Electro Discharge Machining) technology. Furthermore, current and voltage profiles of the HSWEDM (High Speed Wire Electrical Discharge Machining) pulses are analyzed as well as the machined work piece surfaces.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Asif Tanveer ◽  
Shiv Kapoor

Abstract Atomized dielectric-based electrical discharge machining (EDM) is a novel machining process in which a thin film of moving fluid resulting from a spray acts as the dielectric in the interelectrode gap. In addition to acting as the dielectric, the thin film also helps to flush the debris away from EDM crater features and requires very small quantity of fluid in doing so. This results in significantly less dielectric consumption compared to the conventional EDM while yielding higher material removal rates and better debris flushing. This paper presents a model-based investigation of the mechanism of debris flushing in atomized dielectric-based EDM. A material removal model is used to predict the amount of debris removed in terms of number of particles ejected during a single EDM discharge. The dielectric material properties and atomization spray parameters are varied in order to produce different ejection conditions and crater geometries, respectively. Particles are ejected from the bottom of crater geometries. The model captures the asymmetry in particle motion caused by the dielectric film flow and predicts the percentage of debris flushed away from the crater center. It is also observed that crater shape and size of debris particles play a role in the amount of debris flushed away.


Author(s):  
Asif Tanveer ◽  
S. G. Kapoor

Abstract Atomized dielectric-based electrical discharge machining (EDM) is a novel machining process in which a thin film of moving fluid resulting from a spray acts as the dielectric in the interelectrode gap. In addition to acting as the dielectric, the thin film also helps to flush the debris away from EDM crater features and requires very small quantity of fluid in doing so. This results in significantly less dielectric consumption compared to the conventional EDM while yielding higher material removal rates and better debris flushing. This paper presents a model-based investigation of the mechanism of debris flushing in atomized dielectric-based EDM. A material removal model is used to predict the amount of debris removed in terms of number of particles ejected during a single EDM discharge. The dielectric material properties and atomization spray parameters are varied in order to produce different ejection conditions and crater geometries, respectively. Particles are ejected from the bottom of crater geometries. The model captures the asymmetry in particle motion caused by the dielectric film flow and predicts the percentage of debris flushed away from the crater center. It is also observed that crater shape and size of debris particles play a role in the amount of debris flushed away.


2020 ◽  
Vol 308 ◽  
pp. 51-63
Author(s):  
Mariusz Król ◽  
Marek Musiorski ◽  
Marek Pagáč

In presented work, extrusion die made by maraging steel used in TPE processing was optimised by means of flow dynamics of the final part. Maraging steel Ni-18 (M300) die were produced by Selective Laser Melting (SLM) using AM125 machine provided by Renishaw. The developed and manufactured extrusion die has not been processed by finishing the process, i.e. grinding, polishing or sandblasting. The tests were carried out using TPE industrial extrusion plant. Moreover, designed extrusion die to decrease weight and save the material; the design was hollow. The presented results indicate that the SLM technique is a promising method for the production in one production process the extrusion dies used in the TPE extrusion process with complex internal walls, with high accuracy, high speed and at low costs and own outlays. Moreover, this technique gives the constructors possibilities to design very complicated shapes of profiles with more than one of the working areas (bubbles) or design co-extrusion dies. Application of SLM technique allows to manufacture air ducts with pipe connectors to fasten an air, hence eliminating from the process expensive and time-consuming electrical discharge machining.


Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

Sign in / Sign up

Export Citation Format

Share Document