Testing and Numerical Modeling of PVC-CFRP Confined Concrete Column-Reinforced Concrete Beam Joint under Axial Load

Author(s):  
Ping Wu ◽  
Jie Liu ◽  
Feng Yu ◽  
Yuan Fang ◽  
Defeng Zhu
2013 ◽  
Vol 351-352 ◽  
pp. 1450-1453
Author(s):  
Xiao Yong Wu ◽  
Yang Zhou Li

The elasto-plastic analysis of reinforced concrete square columns was introduced to study the relationship between lateral force and curvature by using the open source program OpenSees. A pseudo static test on the inverted "T" shape reinforced concrete square column was conducted for the comparative analysis. The results indicated that the lateral force calculated by program agree with experimental data with an axial load ratio of 0.33. The calculated yield lateral force was 29.7 kN, the error was lower than 7% compared with experimental results. In addition, the cross-section curvature were obtained, which were difficult to obtain through the traditional experimental study, the calculated yield curvature was 1.825×10-5. The calculated results with different axial load ratios were presented in this paper, which showed that both the yield lateral force and curvature of reinforced concrete square columns were increased with low axial load ratio, and at the same time it could reduce some experimental work by using computer simulation.


2022 ◽  
pp. 136943322110646
Author(s):  
Feng Yu ◽  
Qiye Zou ◽  
Yuan Fang ◽  
Dongang Li ◽  
Shuangshuang Bu

This paper presents an experimental study on 11 weak PVC-FRP Confined Concrete (PFCC) Column-strong Reinforced Concrete beam joints reinforced with Core Steel Tube (CST) subjected to axial load. The influences of the joint height, joint stirrup ratio, Carbon Fiber Reinforced Polymer (CFRP) strips spacing, steel ratio and CST length on the failure mode, ultimate strength, and strain behavior of specimens are analyzed and discussed. Test results indicate that the failure mode of specimens is distinguished by the cracking of PVC tube, fracture of CFRP strips, yielding of stirrups, and longitudinal steel bars in the PFCC columns. Both the longitudinal steel bars and CST yield at the joint area, while there is no obvious damage on the joint. The ultimate stress of specimens decreases with the increment of CFRP strips spacing, while the other studied variables have little impact on the ultimate stress. As the CFRP strips spacing increases, the ultimate strain of specimens decreases, and the strain development accelerates. Considering the effect of joint dimension, a modified prediction model for the stress–strain relationship of axially loaded weak PFCC column-strong RC beam joints reinforced with CST is proposed and verified with good accuracy.


2012 ◽  
Vol 204-208 ◽  
pp. 1094-1101 ◽  
Author(s):  
Kun Wang ◽  
Hui Hui Luo ◽  
Wen Zhong Zheng

This paper developed a finite element modelling (FEM) to simulate two frame specimens composed of steel reinforced concrete beam and angle-steel concrete column under horizontal loading. In the FEM, a series of simulation technologies such as defining material models, selecting element types, applying load, and parameters determination were described. Through the FEM, the skeleton curves, failure modes, and strain distribution are acquired, and the calculated results are basically agree well with the tests. Furthermore, the mechanism of the composite frame structure under horizontal loading is analyzed.


2012 ◽  
Vol 256-259 ◽  
pp. 674-679
Author(s):  
Kun Wang ◽  
Shi Yun Xu ◽  
Hui Hui Luo

Based on the simulated results of joint of SRC beam and RC column (steel reinforced concrete beam and reinforced concrete column) with steel anchor, an analytical research on failure models and shear performance of three types of joints is conducted, which is composed of SRC beam and RC column, of SRC beam and column (steel reinforced concrete beam and column) and of SRC beam and ASC column (steel reinforced concrete beam and angle-steel concrete column). Then the parameters analysis for joint of SRC beam and ASC column is carried out, and the design formula of shear capacity for joint of SRC beam and ASC column is given on account of a great number of calculated and statistic results.


Sign in / Sign up

Export Citation Format

Share Document