Dynamic behaviour of granular soil materials mixed with granulated rubber: influence of rubber content and mean grain size ratio on shear modulus and damping ratio for a wide strain range

Author(s):  
G. A. Pistolas ◽  
A. Anastasiadis ◽  
K. Pitilakis
2018 ◽  
Vol 23 (8) ◽  
pp. 1407-1440 ◽  
Author(s):  
Guoxing Chen ◽  
Zhenglong Zhou ◽  
Tian Sun ◽  
Qi Wu ◽  
Lingyu Xu ◽  
...  

2017 ◽  
Vol 62 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Ayse Edincliler ◽  
Ali Firat Cabalar ◽  
Abdulkadir Cevik ◽  
Haluk Isik

This paper describes the results of a series of cyclic triaxial tests on sand - waste tire mixtures, and applications of genetic programming (GP) and stepwise regression (SR) for the prediction of damping ratio and shear modulus of the mixtures tested. In the tests, shear modulus, and damping ratio of the geomaterials were measured for a strain range of 0.0001% up to 0.04%. The input variables in the developed GP and SR models are the waste tire content (0%, 10%, 20%, and 30%), waste tire type (tire crumbs or tire buffings), strain, and confining pressures (40 kPa, 100 kPa, and 200 kPa), and outputs are shear modulus and damping ratio. Test results show that the shear modulus and the damping ratio of the mixtures are strongly influenced by the waste tire inclusions. The performance of the proposed GP models (R2 = 0.95 for shear modulus, and R2 = 0.94 for damping ratio) are observed to be more accurate than that of the SR models (R2 = 0.87 for shear modulus, and R2 = 0.91 for damping ratio).


2009 ◽  
Vol 46 (11) ◽  
pp. 1277-1288 ◽  
Author(s):  
G. Lanzo ◽  
A. Pagliaroli ◽  
P. Tommasi ◽  
F. L. Chiocci

Stiffness and damping properties of sensitive, very soft clay sediments of the Italian Adriatic continental shelf are determined by means of two series of cyclic simple shear tests (one with 12 stages and one with two stages). The apparatus used in this research is capable of investigating the stress–strain behaviour of the soil in a wide range of shear strains from about 0.0004% to 1%. Test results were expressed in terms of small-strain shear modulus (G0), normalized equivalent shear modulus (Geq/G0), and damping ratio (D) versus cyclic shear-strain amplitude (γc). These parameters were analyzed in the framework of existing literature by comparison with empirical correlations developed for onshore materials of different plasticity and, limited to G0, also for soft soils. The dependence of G0, Geq/G0–γc, and D–γc on factors such as void ratio, stress history, and loading cycles is analyzed and discussed.


2019 ◽  
Vol 9 (18) ◽  
pp. 3863
Author(s):  
Pan ◽  
Li ◽  
Lu ◽  
Chen

Soil mixtures with various materials such as scraps of rubber tire, iron powder, and synthetic fibers have been widely used in civil engineering for experimental research or infrastructure construction and maintenance. However, these materials are not only expensive, but may also result in environmental concerns. In recent years, sawdust, because of its light-weight, inexpensive, and environmental friendly characteristics, has frequently been used in the shaking table test to adjust the dynamic properties of experimental soil. However, the dynamic properties of a sand-sawdust mixture for the shaking table test are still unclear. In this paper, the dynamic properties and the hysteresis curve characteristics of the sand-sawdust mixture as well as the influence of the sawdust content and confining pressure on the dynamic properties were studied using a series of consolidated drained dynamic triaxial tests. The test results show that, with the increase of the shear strain, the shape of the hysteresis loops changes from symmetrical willow-leaf to asymmetry sharp-leaf. For a given confining pressure, both the shear modulus and damping ratio decreases as the sawdust percentage increases. It was observed that, with an increase in confining pressure, the shear modulus increased while the damping ratio decreased slightly in the shear strain range of 10−3 to 7×10−3. It was also observed that the maximum shear modulus increased as the confining pressure increased, while the maximum damping ratio remained nearly constant. In addition, both the maximum shear modulus and the maximum damping ratio decreased as the sawdust content increased. Finally, the normalized shear modulus and damping ratio were established, which can be used in simulations using the shaking table test.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2166 ◽  
Author(s):  
Mikhail Kishchik ◽  
Anastasia Mikhaylovskaya ◽  
Anton Kotov ◽  
Ahmed Mosleh ◽  
Waheed AbuShanab ◽  
...  

The effect of isothermal multidirectional forging (IMF) on the microstructure evolution of a conventional Al–Mg-based alloy was studied in the strain range of 1.5 to 6.0, and in the temperature range of 200 to 500 °C. A mean grain size in the near-surface layer decreased with increasing cumulative strain after IMF at 400 °C and 500 °C; the grain structure was inhomogeneous, and consisted of coarse and fine recrystallized grains. There was no evidence of recrystallization when the micro-shear bands were observed after IMF at 200 and 300 °C. Thermomechanical treatment, including IMF followed by 50% cold rolling and annealing at 450 °C for 30 min, produced a homogeneous equiaxed grain structure with a mean grain size of 5 µm. As a result, the fine-grained sheets exhibited a yield strength and an elongation to failure 30% higher than that of the sheets processed with simple thermomechanical treatment. The IMF technique can be successfully used to produce fine-grained materials with improved mechanical properties.


2012 ◽  
Vol 9 (2) ◽  
pp. 103680 ◽  
Author(s):  
Anastasios Anastasiadis ◽  
Kostas Senetakis ◽  
Kyriazis Pitilakis ◽  
Chrysanthi Gargala ◽  
Iphigeneia Karakasi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document