Spent fluid cracking and spent alumina catalysts as sustainable construction materials in concrete

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Khalifa Al-Jabri ◽  
Zahran Al-Kamyani ◽  
Khalid Al-Shamsi ◽  
Abdullah Al-Saidy ◽  
Kazi M. A. Sohel
2021 ◽  
Vol 11 (11) ◽  
pp. 4754
Author(s):  
Assia Aboubakar Mahamat ◽  
Moussa Mahamat Boukar ◽  
Nurudeen Mahmud Ibrahim ◽  
Tido Tiwa Stanislas ◽  
Numfor Linda Bih ◽  
...  

Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE).


◽  
2019 ◽  
Author(s):  
Van Bui ◽  
◽  
Chris Eagon ◽  
Steve Schaef ◽  
Paul Seiler ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 63-74
Author(s):  
Wolfram Schmidt ◽  
Mike Otieno ◽  
Kolawole Olonade ◽  
Nonkululeko Radebe ◽  
Henri Van-Damme ◽  
...  

Africa is urgently in need of adequate basic infrastructure and housing, and it is one of the continents where massive construction activities are on the rise. There is a vast variety of potentially viable resources for sustainable construction on the continents, and consequently, the continent can bring innovative, greener technologies based on local sources effectively into practice. However, unlike established concrete constituents from industrialised countries in the global North, most of the innovation potentials from the African continent have not yet been the focus of intensive fundamental and applied research. This clearly limits the implementation of more sustainable local technologies. This paper presents a case for the need to first appreciate the rich diversity and versatility of the African continent which is often not realistically perceived and appreciated. It discusses specific innovation potentials and challenges for cementitious materials and concrete technology based on local materials derived from sources on the African continent. The unique African materials solutions are presented and discussed, from mineral binders over chemical admixtures and fibres to reinforcement and aggregates. Due to the pressing challenges faced by Africa, with regards to population growth and urbanisation, the focus is not only put on the technological (durability, robustness and safety) and environmental sustainability, but also strongly on socio-economic applicability, adaptability and scalability. This includes a review of alternative, traditional and vernacular construction technologies such as materials-saving structures that help reducing cementitious materials. Eventually, a strategic research roadmap is hypothesised that points out the most relevant potentials and research needs for quick implementation of more localised construction materials.


2021 ◽  
Vol 237 ◽  
pp. 01017
Author(s):  
Hang Yang ◽  
Mei-Chun Zhu ◽  
Cong-Qi Fang

Geopolymer composites have been widely researched during recent years as an alternative to sustainable construction materials, which can minimize CO2 emission for its application of industry by-products. Past researches on geopolymer show that it has comparable strength and better high temperature stability compared to ordinary Portland cement. In this paper, the high-temperature behavior of geopolymer paste has been discussed through the last data regarding geopolymer, mainly including its bonding performance with steel, stress-strain characteristics, structural analysis of different observation scales and the performance of special geopolymer paste. In summary, some problems that need to be studied in future researches are put forward.


Author(s):  
Andres Winston C. Oreta ◽  
Maejann E. Cuartero ◽  
Nikko Paolo P. Villanueva

<p>Sustainable construction can be promoted by producing construction materials with recycled waste. This study aims to address the issue of recycling plastic wastes and providing a means of livelihood in a relocation site of typhoon victims and urban settlers in Metro Manila by exploring the production of quality concrete hollow blocks (CHB) mixed with waste plastic wastes. In the study, the strength properties of concrete with various types of plastic wastes (PW) such as plastic bags (PB) and noodle wrappers (NW) as substitute to fine aggregates were investigated. Different percent substitutions, specifically 2.5%, 5%, 7.5% and 10%, were considered for each mix. The behaviour and strength properties of the concrete with and without PW were analysed and compared Moreover, the microscopic structures of the various types of mixes were observed using a Scanning Electron Microscopy (SEM) and related to the failure mode and strength performance. Results show that concrete with PB outperformed the other concrete mixes with plastics due to the plastic bag’s high stretchable property, compared to the noodle wrappers. In addition, plastics, in general, provide additional ductility to the concrete enabling them to tolerate more deformation at lower loads. The final product of the study is a mix design for producing non-load bearing concrete hollow blocks (CHB) that can be used for low-cost housing in the Philippines.</p>


2019 ◽  
pp. 658-687 ◽  
Author(s):  
R. V. Ralegaonkar ◽  
M. V. Madurwar ◽  
V. V. Sakhare

Due to ever increasing demand for the conventional construction materials as well as an increase in agro-industrial by-products it is essential to reuse these materials. As a smart city solution this chapter briefs an overview for the application of alternate raw materials as a principal source for the development of sustainable construction materials. The potential application of the discussed raw materials is elaborated as cementitious material, the aggregates as well as alternative reinforcement material. To understand the process of application, sustainable masonry product development is discussed in detail. In order to evaluate the feasibility of the raw material, the necessary physico-chemical test evaluation methods are also briefed. The developed end product performance evaluation is also discussed by desired tests as recommended by standards. The chapter concludes with a positive note that reuse of agro-industrial by-products is a feasible solution for the smart city development.


Sign in / Sign up

Export Citation Format

Share Document