Contribution of Concrete-Polymer Composites to Sustainable Construction Materials and Systems

Author(s):  
D. Van Gemert
2013 ◽  
Vol 687 ◽  
pp. 45-56 ◽  
Author(s):  
José Barroso Aguiar ◽  
Hulusi Özkul ◽  
Sandra Cunha

The field of polymers in concrete is consolidated in the construction industry. The future of polymers in concrete is governed by the synergic interaction between these materials, in order to contribute significantly towards a more sustainable construction. Concrete-polymer composites (C-PC) have excellent mechanical and durability properties. Appropriate combination of polymers and classical construction materials provides opportunities for innovative applications and systems. This paper highlights the innovations and new approaches presented at the 13th International Congress on Polymers in Concrete in Madeira, Portugal, 2010 and at the 7th Asian Symposium on Polymers in Concrete in Istanbul, Turkey, 2012. The new trends presented are related with the micro and nanostructure, properties, test methods and applications of concrete-polymer composites.


Author(s):  
Taneya Tom ◽  
Elba Helen George

Huge amount of wastes are being generated, and even though the incineration process reduce the mass of wastes to a large extent, large amount of residues are still remain. The sustainable development of the system should decrease the waste-to-energy ratio continuously through the planned reuse of materials. This paper reviews the existing studies on recycling municipal and construction solid waste for the manufacture of Geo polymer composites. The principal findings of this work reveal that municipal and construction solid waste could be successfully used into Geo polymer composites as an alternative in the forms of precursor, aggregate, additive, reinforcement fibres, or filling material. Additionally, the results indicate that although the inclusion of such waste might depress some attributes of Geo polymer composites, proper proportion design and suitable treatment technique could solve these detrimental effects. Finally, a brief discussion is provided to identify the important needs in the future research and development for promoting the utilization of solid waste materials in the forthcoming sustainable geo polymer industry. In summary, this work offers guidance for a greener approach to building – scoring favourably in environmental performance for being relevant to resource conservation, landfill diversion, and waste recycling. Keywords: Construction materials, Geo polymer composite, Municipal solid waste, Construction solid waste, Sustainability.


2021 ◽  
Vol 11 (11) ◽  
pp. 4754
Author(s):  
Assia Aboubakar Mahamat ◽  
Moussa Mahamat Boukar ◽  
Nurudeen Mahmud Ibrahim ◽  
Tido Tiwa Stanislas ◽  
Numfor Linda Bih ◽  
...  

Earth-based materials have shown promise in the development of ecofriendly and sustainable construction materials. However, their unconventional usage in the construction field makes the estimation of their properties difficult and inaccurate. Often, the determination of their properties is conducted based on a conventional materials procedure. Hence, there is inaccuracy in understanding the properties of the unconventional materials. To obtain more accurate properties, a support vector machine (SVM), artificial neural network (ANN) and linear regression (LR) were used to predict the compressive strength of the alkali-activated termite soil. In this study, factors such as activator concentration, Si/Al, initial curing temperature, water absorption, weight and curing regime were used as input parameters due to their significant effect in the compressive strength. The experimental results depict that SVM outperforms ANN and LR in terms of R2 score and root mean square error (RMSE).


◽  
2019 ◽  
Author(s):  
Van Bui ◽  
◽  
Chris Eagon ◽  
Steve Schaef ◽  
Paul Seiler ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 63-74
Author(s):  
Wolfram Schmidt ◽  
Mike Otieno ◽  
Kolawole Olonade ◽  
Nonkululeko Radebe ◽  
Henri Van-Damme ◽  
...  

Africa is urgently in need of adequate basic infrastructure and housing, and it is one of the continents where massive construction activities are on the rise. There is a vast variety of potentially viable resources for sustainable construction on the continents, and consequently, the continent can bring innovative, greener technologies based on local sources effectively into practice. However, unlike established concrete constituents from industrialised countries in the global North, most of the innovation potentials from the African continent have not yet been the focus of intensive fundamental and applied research. This clearly limits the implementation of more sustainable local technologies. This paper presents a case for the need to first appreciate the rich diversity and versatility of the African continent which is often not realistically perceived and appreciated. It discusses specific innovation potentials and challenges for cementitious materials and concrete technology based on local materials derived from sources on the African continent. The unique African materials solutions are presented and discussed, from mineral binders over chemical admixtures and fibres to reinforcement and aggregates. Due to the pressing challenges faced by Africa, with regards to population growth and urbanisation, the focus is not only put on the technological (durability, robustness and safety) and environmental sustainability, but also strongly on socio-economic applicability, adaptability and scalability. This includes a review of alternative, traditional and vernacular construction technologies such as materials-saving structures that help reducing cementitious materials. Eventually, a strategic research roadmap is hypothesised that points out the most relevant potentials and research needs for quick implementation of more localised construction materials.


2021 ◽  
Vol 237 ◽  
pp. 01017
Author(s):  
Hang Yang ◽  
Mei-Chun Zhu ◽  
Cong-Qi Fang

Geopolymer composites have been widely researched during recent years as an alternative to sustainable construction materials, which can minimize CO2 emission for its application of industry by-products. Past researches on geopolymer show that it has comparable strength and better high temperature stability compared to ordinary Portland cement. In this paper, the high-temperature behavior of geopolymer paste has been discussed through the last data regarding geopolymer, mainly including its bonding performance with steel, stress-strain characteristics, structural analysis of different observation scales and the performance of special geopolymer paste. In summary, some problems that need to be studied in future researches are put forward.


Author(s):  
Andres Winston C. Oreta ◽  
Maejann E. Cuartero ◽  
Nikko Paolo P. Villanueva

<p>Sustainable construction can be promoted by producing construction materials with recycled waste. This study aims to address the issue of recycling plastic wastes and providing a means of livelihood in a relocation site of typhoon victims and urban settlers in Metro Manila by exploring the production of quality concrete hollow blocks (CHB) mixed with waste plastic wastes. In the study, the strength properties of concrete with various types of plastic wastes (PW) such as plastic bags (PB) and noodle wrappers (NW) as substitute to fine aggregates were investigated. Different percent substitutions, specifically 2.5%, 5%, 7.5% and 10%, were considered for each mix. The behaviour and strength properties of the concrete with and without PW were analysed and compared Moreover, the microscopic structures of the various types of mixes were observed using a Scanning Electron Microscopy (SEM) and related to the failure mode and strength performance. Results show that concrete with PB outperformed the other concrete mixes with plastics due to the plastic bag’s high stretchable property, compared to the noodle wrappers. In addition, plastics, in general, provide additional ductility to the concrete enabling them to tolerate more deformation at lower loads. The final product of the study is a mix design for producing non-load bearing concrete hollow blocks (CHB) that can be used for low-cost housing in the Philippines.</p>


Sign in / Sign up

Export Citation Format

Share Document