Effect of Straw Retention on Crop Yield, Soil Properties, Water Use Efficiency and Greenhouse Gas Emission in China: A Meta-Analysis

2019 ◽  
Vol 13 (4) ◽  
pp. 347-367
Author(s):  
Peng Liu ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  
2020 ◽  
Vol 202 ◽  
pp. 104676
Author(s):  
Xiaobo Gu ◽  
Huanjie Cai ◽  
Heng Fang ◽  
Yupeng Li ◽  
Pengpeng Chen ◽  
...  

2018 ◽  
Vol 210 ◽  
pp. 158-164 ◽  
Author(s):  
Ya-Dan Du ◽  
Wen-Quan Niu ◽  
Xiao-Bo Gu ◽  
Qian Zhang ◽  
Bing-Jing Cui ◽  
...  

Author(s):  
Y. Li ◽  
S. Yi ◽  
Y. Lin ◽  
S. Liu

This paper proposes an optimization method based on the RAGA model. Taking rice from a cold area as the research object, this article selects irrigation volume, nitrogen application volume, and biochar application volume as experimental factors, and rice yield, water use efficiency, greenhouse gas emission comprehensive warming potential as influencing indicators. The research design is D311 Field trials by 3 factors of 5 levels of saturation. Hence, we can obtain the data on rice yield, water use efficiency, greenhouse gas emissions and comprehensive warming potential under different levels of water and fertilizer, and biochar application, and regression equations were established respectively. The RAGA model was used to simulate the regression equations. The optimal combination of water and fertilizer, and biochar was obtained as follows: irrigation amount is 7230 m3.hm-2, nitrogen fertilizer application amount is 92.13 kg.hm-2, and biochar application amount is 30 t.hm-2. The optimal rice yield obtained under this combination is 9452.20 kg.hm-2. The water use efficiency is 1.94 kg.m-3, and the comprehensive warming potential of greenhouse gas emissions is 4546.73 kg.hm-2. The combined application of water and fertilizer, and biochar optimized by this model can provide a theoretical basis for achieving high yield, water-saving, and emission reduction of rice in cold areas, and it can also provide a reliable calculation method and idea for solving similar optimization problems in the field of agricultural production.


2021 ◽  
Vol 256 ◽  
pp. 107085
Author(s):  
Jun Wang ◽  
Shaohong Zhang ◽  
Upendra M. Sainju ◽  
Rajan Ghimire ◽  
Fazhu Zhao

2019 ◽  
Vol 62 (2) ◽  
pp. 485-493 ◽  
Author(s):  
Mingyi Huang ◽  
Zhanyu Zhang ◽  
Zhuping Sheng ◽  
Chengli Zhu ◽  
Yaming Zhai ◽  
...  

Abstract. With growing competition for freshwater by industrialization and urbanization, brackish water irrigation has been increasingly used for agricultural production. One of major concerns is the accumulation of salt and its impacts on soil properties and crop yield. If properly managed, alternate irrigation with brackish and freshwater might alleviate the adverse impacts of salt on soil physicochemical properties and plant growth. To exploit proper alternate irrigation to minimize such impacts, a maize pot experiment was conducted at three stages (seedling, jointing and tasseling, and after tasseling) with three alternate irrigation methods (BFF: brackish-fresh-fresh, FBF: fresh-brackish-fresh, and FFB: fresh-fresh-brackish) and with three salinities (1.69, 4.81, and 7.94 dS m-1), respectively. The results show that compared to freshwater irrigation, alternate irrigation with high-salinity brackish water increased soil electrical conductivity by 4.1% to 207.4% and reduced soil infiltration rate by 19.2% to 51.9%. The adverse impacts were more prominent in FBF and FFB than in BFF due to the higher proportions of brackish water in FBF and FFB. High-salinity brackish water also caused salt stress on maize growth and decreased evapotranspiration, relative water content, intrinsic water use efficiency, and electron transport rate by 6.6% to 30.6%, 2.1% to 10.2%, 7.3% to 17.9%, and 7.2% to 39.6%, respectively, leading to reduced growth and productivity. The salt stress was more pronounced in BFF and FBF than in FFB because maize is more salt-sensitive during the vegetative stage. Overall, brackish water irrigation at the jointing and tasseling stage (FBF) caused the most severe impacts on both soil and maize, so freshwater is advocated at this stage. In BFF, due to sufficient freshwater irrigation at later stages, slightly saline irrigation can be applied at the seedling stage without evident adverse effects. Higher-salinity brackish water was used successfully in the after-tasseling stage (FFB), although salt leaching by off-season rainfall was needed after harvest for sustainable production. Keywords: Crop yield, Saline water, Salt stress, Soil salinity, Water use efficiency.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10967
Author(s):  
Erastus Mak-Mensah ◽  
Peter Bilson Obour ◽  
Eunice Essel ◽  
Qi Wang ◽  
John K. Ahiakpa

Background China is the leading consumer of plastic film worldwide. Plastic film mulched ridge-furrow is one of the most widely adopted agronomic and field management practices in rain-fed agriculture in dry-land areas of China. The efficiency of plastic film mulching as a viable method to decrease evapotranspiration (ET), increase crop yields, and water use efficiency (WUE), has been demonstrated extensively by earlier studies. Methods A comprehensive evaluation of how co-application of plastic-film mulch and biochar in different agro-environments under varying climatic conditions influence ET, crop yield, WUE, and soil microbial activity were assessed. We performed a meta-analysis using the PRISMA guideline to assess the effect of plastic-film mulched ridge-furrow and biochar on ET, yield, and WUE of wheat (Triticum aestivum L.), potato (Solanum tuberosum L.), and maize (Zea mays L.) in northern China. Results The use of plastic film increased average yields of wheat (75.7%), potato (20.2%), and maize (12.9%) in Gansu, Ningxia, Shaanxi, and Shanxi provinces, respectively due to the reduction in ET by 12.8% in Gansu, 0.5% in Ningxia, and 4.1% in Shanxi, but increased in Shaanxi by 0.5% compared to no-mulching. These changes may be attributed to the effect of plastic film mulch application which simultaneously increased WUE by 68.5% in Gansu, 23.9% in Ningxia, 16.2% in Shaanxi, and 12.8% in Shanxi, respectively. Compared to flat planting without mulching, in three years, the yield of maize increased with the co-application of plastic film and biochar by 22.86% in the Shanxi and Shaanxi regions. Conclusion Our analysis revealed co-application of plastic film with biochar is integral for improving soil and water conservation in rain-fed agriculture and as an integrated practice to avert drought while simultaneously mitigating runoff and erosion.


Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

Sign in / Sign up

Export Citation Format

Share Document