Pressure fluctuation characteristics in the pressurization unit of a multiphase pump

2021 ◽  
Vol 33 (6) ◽  
pp. 1230-1241
Author(s):  
Guang-tai Shi ◽  
Zong-ku Liu ◽  
Ye-xiang Xiao ◽  
Xue-lin Tang ◽  
Xiao-bing Liu
Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 556
Author(s):  
Guangtai Shi ◽  
Zongku Liu ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Xuelin Tang

Tip clearance has a great effect on the flow and pressure fluctuation characteristics in a multiphase pump, especially at multiple operating points. The phase distribution and pressure fluctuation in tip clearance in a multiphase pump are revealed using the CFD (computational fluid dynamics) technology and high-speed photography methods. In this paper, the phase distribution, the gas-liquid two-phase velocity slip, and the pressure fluctuation intensity are comprehensively analyzed. Results show with the increase of the tip clearance, the multiphase pump pressurization performance is obviously deteriorated. In the meantime, the gas accumulation mainly occurs at the hub, the blade suction side (SS), and the tip clearance, and the maximum gas-liquid two-phase velocity difference is near the impeller streamwise of 0.4. In addition, the tip clearance improves the gas-liquid two-phase distribution in the pump, that is, the larger the tip clearance is, the more uniform the gas-liquid distribution becomes. Furthermore, the gas leads to the maximum pressure fluctuation intensity in the tip clearance which is closer to the tip leakage flow (TLF) outlet, and has a greater effect on the degree of flow separation in the tip clearance.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 461 ◽  
Author(s):  
Yun Xu ◽  
Shuliang Cao ◽  
Takeshi Sano ◽  
Tokiya Wakai ◽  
Martino Reclari

In oil and gas exploitation, the multiphase pump is a vital piece of equipment to guarantee production with high efficiency and stable operation. The complicated pattern of multiphase flow in the multiphase pump affects the pump performance; for this reason, the multiphase performance and the inner flow should be sufficiently investigated. In the present work, a liquid-gas multiphase pump is designed and manufactured, and then tested in a specialized test rig to reveal the transient pressure characteristics of the multiphase pump. Results show that the dominant frequency under water and water-air conditions is the blade passing frequency, which is induced by the rotor stator interaction. In the downstream of the impeller, the pressure fluctuation is obviously weakened, because the splitter-blade design could improve the control ability of flow pattern in the downstream region. In comparison with water condition, the pressure fluctuation of water-air condition greatly increases, and the multiples of impeller rotating frequency are stimulated due to the movement and merging of air bubbles. Finally, the correlation of transient pressure and phase distribution in impeller is revealed by using a high-speed camera. With the gradual pressure rise from impeller inlet to outlet, the relative movement and separation of two phases induce violent pressure fluctuations.


Author(s):  
Jinya Zhang ◽  
Shujie Cai ◽  
Hongwu Zhu ◽  
Rui Qiang

In order to investigate the pressure fluctuation in a three-stage rotodynamic multiphase pump developed by authors, a bench test is set which choose the mixture of water and air as medium. Nine monitors are set in the pump including the inlet of each impeller, the interfaces of the rotor-stator and the middle section of each impeller. It turns out that the minimum pressure fluctuation is located in the interfaces of the rotor-stator in each stage and the maximum is in the interface of two stages. The domain frequency is the blade passing frequency of the impeller and its multipliers and there is no higher frequency. The coefficients of the pressure fluctuation is first decreased and then increased with the increase of the inlet gas volume fraction at the same rotational speed. But it increases with the increase of rotational speed at the same inlet gas volume fraction.


1997 ◽  
Author(s):  
D. Pal ◽  
S. Sinha ◽  
D. Banerjee ◽  
C. Baker ◽  
M. Pandey ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098731
Author(s):  
Yi Shi ◽  
Hongwu Zhu

Rotodynamic multiphase pumps are usually equipped with many compression units to provide sufficient boosting pressure for the transportation of production fluid in gas oil field. It is a challenge to maintain pump performance while flow parameters in each stage vary due to the compressibility of gas-liquid phase. In this article, a stage-by-stage design method is proposed to improve the boosting capability of a multiphase pump. Variations of flow parameters in each stage are investigated based on computational fluid dynamics (CFD) numerical simulation. Available methods to determinate main impeller geometry parameters of impeller are discussed. The stage-by-stage design method is applied on a five-stage multiphase pump when the inlet gas volume fraction (GVF) are 30% and 50% separately. The second stage is modified base on its corresponding inlet flow parameters when inlet GVF is 30% while the second and third stage are modified when inlet GVF is 50%. Flow parameters, pressure distribution and velocity distribution are compared between the original pump and modified pump. Differential pressure of the modified pump increases by 53.72 kPa and 58.57 kPa respectively when inlet GVFs are 30% and 50%. The feasibility of the stage-by-stage design method is verified through the comparison results.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 650
Author(s):  
Guangtai Shi ◽  
Dandan Yan ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Zekui Shu

The gas volume fraction (GVF) often changes from time to time in a multiphase pump, causing the power capability of the pump to be increasingly affected. In the purpose of revealing the pressure load characteristics of the multiphase pump impeller blade with the gas-liquid two-phase case, firstly, a numerical simulation which uses the SST k-ω turbulence model is verified with an experiment. Then, the computational fluid dynamics (CFD) software is employed to investigate the variation characteristics of static pressure and pressure load of the multiphase pump impeller blade under the diverse inlet gas volume fractions (IGVFs) and flow rates. The results show that the effect of IGVF on the head and hydraulic efficiency at a small flow rate is obviously less than that at design and large flow rates. The static pressure on the blade pressure side (PS) is scarcely affected by the IGVF. However, the IGVF has an evident effect on the static pressure on the impeller blade suction side (SS). Moreover, the pump power capability is descended by degrees as the IGVF increases, and it is also descended with the increase of the flow rate at the impeller inlet. Simultaneously, under the same IGVF, with the increase of the flow rate, the peak value of the pressure load begins to gradually move toward the outlet and its value from hub to shroud is increased. The research results have important theoretical significance for improving the power capability of the multiphase pump impeller.


Sign in / Sign up

Export Citation Format

Share Document