Functional analysis of SCD1 gene involved in pathogenicity of spot blotch disease of wheat causing fungus Bipolaris sorokiniana

Author(s):  
Kartar Singh ◽  
Rashmi Aggarwal ◽  
Praveen Kumar Verma ◽  
Sandhya Verma ◽  
Sapna Sharma ◽  
...  
2021 ◽  
Vol 43 (2) ◽  
Author(s):  
M. El Amine Kouadri ◽  
A. Amine Bekkar ◽  
S. Zaim

2021 ◽  
pp. 1-8
Author(s):  
Deep Shikha ◽  
Chandani Latwal ◽  
Elangbam Premabati Devi ◽  
Anupama Singh ◽  
Pawan K. Singh ◽  
...  

Abstract Genetic resources are of paramount importance for developing improved crop varieties, particularly for biotic and abiotic stress tolerance. Spot blotch (SB) is a destructive foliar disease of wheat prevalent in warm and humid regions of the world, especially in the eastern parts of South Asia. For the management of this disease, the most effective measure is the development of resistant cultivars. Thus, the present investigation was carried out to confirm SB resistance in 200 germplasm accessions based on phenotypic observations and molecular characterization. These elite breeding lines obtained from the International Centre for Maize and Wheat Improvement, Mexico, are developed deploying multiple parentages. These lines were screened for SB resistance in the field under artificially created epiphytotic conditions during 2014–15 and 2015–16 along with two susceptible checks (CIANO T79 and Sonalika) and two resistant checks (Chirya 3 and Francolin). Eighty-two out of 200 germplasm accessions were found resistant to SB and resistance in these lines was confirmed with a specific SSR marker Xgwm148. Three accessions, VORONA/CNO79, KAUZ*3//DOVE/BUC and JUP/BJY//URES/3/HD2206/HORK//BUC/BUL were observed possessing better resistance than the well-known SB-resistant genotype Chirya3. These newly identified resistant lines could be used by wheat breeders for developing SB-resistant wheat varieties.


2020 ◽  
Vol 110 (2) ◽  
pp. 440-446 ◽  
Author(s):  
Yueqiang Leng ◽  
Mingxia Zhao ◽  
Jason Fiedler ◽  
Antonín Dreiseitl ◽  
Shiaoman Chao ◽  
...  

Spot blotch (SB) caused by Bipolaris sorokiniana and powdery mildew (PM) caused by Blumeria graminis f. sp. hordei are two important diseases of barley. To map genetic loci controlling susceptibility and resistance to these diseases, a mapping population consisting of 138 recombinant inbred lines (RILs) was developed from the cross between Bowman and ND5883. A genetic map was constructed for the population with 852 unique single nucleotide polymorphism markers generated by sequencing-based genotyping. Bowman and ND5883 showed distinct infection responses at the seedling stage to two isolates (ND90Pr and ND85F) of Bipolaris sorokiniana and one isolate (Race I) of Blumeria graminis f. sp. hordei. Genetic analysis of the RILs revealed that one major gene (Scs6) controls susceptibility to Bipolaris sorokiniana isolate ND90Pr, and another major gene (Mla8) confers resistance to Blumeria graminis f. sp. hordei isolate Race I, respectively. Scs6 was mapped on chromosome 1H of Bowman, as previously reported. Mla8 was also mapped to the short arm of 1H, which was tightly linked but not allelic to the Rcs6/Scs6 locus. Quantitative trait locus (QTL) analysis identified two QTLs, QSbs-1H-P1 and QSbs-7H-P1, responsible for susceptibility to spot blotch caused by Bipolaris sorokiniana isolate ND85F in ND5883, which are located on chromosome 1H and 7H, respectively. QSbs-7H-P1 was mapped to the same region as Rcs5, whereas QSbs-1H-P1 may represent a novel allele conferring seedling stage susceptibility to isolate ND85F. Identification and molecular mapping of the loci for SB susceptibility and PM resistance will facilitate development of barley cultivars with resistance to the diseases.


Plant Disease ◽  
2021 ◽  
Author(s):  
Danilo Neves ◽  
Bill Bruening ◽  
Carrie A Knott ◽  
Chad Lee ◽  
Carl Bradley

The Kentucky distilling industry ranks as one of the state’s largest industries and continues to expand. In 2017, the Kentucky distilling industry was responsible for approximately $235 million in state and local tax revenues (Coomes and Kornstein, 2019). Rye (Secale cereale L.) grains are a vital component for production of some distilled spirits. Although winter rye is produced on relatively few hectares in Kentucky currently, a recent initiative has supported expanding production to help meet the growing demand of local distilleries. University of Kentucky winter rye research field trials were visited in Caldwell and Logan Counties, KY in May 2018, and in Fayette County, KY in May 2019. Leaves were collected that had dark brown, oval to irregular-shaped lesions with definite margins and yellow halos. Symptoms were present on approximately 50% to 80% of the flag leaves, with severity ranging from 5% to 30% of the flag leaf area affected. Leaves were surface-disinfested by soaking in a 2% NaOCl solution for 1 min and rinsed twice in sterilized water and then placed in a humidity chamber (plastic bag with moist paper towels) at room temperature (approximately 24°C) to induce fungal sporulation. Seventeen single-spore isolates were obtained and stored at -80°C in 15% glycerol solution. Isolates were grown on potato dextrose agar under 12 h cycles of white light/darkness for 5 days. Colonies were gray to black. Conidia that formed were mostly straight or slightly curved, dark olivaceous brown, 3-7 septate, and 41.0-90.4 × 15.2-29.3 µm. Based on the symptoms observed on the collected leaves and these morphological characteristics similar to those described by Chang and Hwang (2000) and Manamgoda et al. (2014), the fungus was tentatively identified as Bipolaris sorokiniana (Sorokin) Shoemaker. The sequence of internal transcribed spacer regions (ITS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used to identify three isolates (18Bs004, 18Bs111 and 19Bs064) using primer ITS1/ITS4 (White et al. 1990) and GPD1/GPD2 (Berbee et al. 1999), respectively. The sequences were deposited in GenBank with accession numbers MT457817, MT457818 and MZ066635 for ITS sequences and MZ073644 to MZ073646 for GAPDH sequences. BLAST searches with ITS and GAPDH sequences matched 100% identity (344/344 bp and 515/515 bp for ITS and GAPDH sequences, respectively) to B. sorokiniana (GenBank accession No. MT254731 and MH844813, respectively). To prove pathogenicity, a conidial suspension (1 × 105 conidia/ml) was used to inoculate 15-day-old cultivar ‘Serafino’ winter rye plants in the greenhouse. Leaves of 8 plants were inoculated with 50 ml of the conidial suspension using a spray bottle. Plants were covered with a transparent plastic bag for 48 h, and symptoms were observed 10 days after inoculation. Leaf lesions, similar to those described above, were present on all inoculated plants, but no symptoms were observed on non-inoculated control plants. Bipolaris sorokiniana was reisolated from symptomatic leaves and the identity of the pathogen was confirmed based on the morphology previously described. To our knowledge, this is the first report of spot blotch caused by B. sorokiniana on winter rye in Kentucky, but B. sorokiniana has been reported on rye in the neighboring state of Virginia (Roane 2009). Kentucky produces approximately 150,000 and 4,000 ha of winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare) annually, respectively, which are both known hosts of B. sorokiniana (Kumar et al. 2002). An isolate of B. sorokiniana from rye was reported by Ghazvini and Tekauz (2007) to be less virulent on barley differential lines. Further research is needed to better understand spot blotch distribution, susceptibility in winter rye cultivars, and potential yield and quality loss implications in winter rye production and end use. It is unknown how susceptible various winter rye cultivars grown in Kentucky are to spot blotch.


2007 ◽  
Vol 56 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Shree P. Pandey ◽  
Sandeep Sharma ◽  
R. Chand ◽  
P. Shahi ◽  
A. K. Joshi

2001 ◽  
Vol 91 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Jagdish Kumar ◽  
Ralph Hückelhoven ◽  
Ulrich Beckhove ◽  
Subrahmaniam Nagarajan ◽  
Karl-Heinz Kogel

In search of new durable disease resistance traits in barley to control leaf spot blotch disease caused by the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), we developed macroscopic and microscopic scales to judge spot blotch disease development on barley. Infection of barley was associated with cell wall penetration and accumulation of hydrogen peroxide. The latter appeared to take place in cell wall swellings under fungal penetration attempts as well as during cell death provoked by the necrotrophic pathogen. Additionally, we tested the influence of a compromised Mlo pathway that confers broad resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Powdery mildew-resistant genotypes with mutations at the Mlo locus (mlo genotypes) showed a higher sensitivity to infiltration of toxic culture filtrate of Bipolaris sorokiniana as compared with wild-type barley. Mutants defective in Ror, a gene required for mlo-specified powdery mildew resistance, were also more sensitive to Bipolaris sorokiniana toxins than wild-type barley but showed less symptoms than mlo5 parents. Fungal culture filtrates induced an H2O2 burst in all mutants, whereas wild-type (Mlo) barley was less sensitive. The results support the hypothesis that the barley Mlo gene product functions as a suppresser of cell death. Therefore, a compromised Mlo pathway is effective for control of biotrophic powdery mildew fungus but not for necrotrophic Bipolaris sorokiniana. We discuss the problem of finding resistance traits that are effective against both biotrophic and necrotrophic pathogens with emphasis on the role of the anti-oxidative system of plant cells.


Sign in / Sign up

Export Citation Format

Share Document