scholarly journals Backstepping LQG controller design for stabilizing and trajectory tracking of vehicle suspension system

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Akshaya Kumar Patra
2011 ◽  
Vol 403-408 ◽  
pp. 4800-4805 ◽  
Author(s):  
A. R. Paarya ◽  
H. Zarabadipour

In this paper the digital controller design for vehicle suspension system, based on a half-car model using singular perturbed systems is considered. This strategy is based on the slow and fast subsystems controller design. The simulation results show them favorable performance of the controller and achieve fast and good response.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Jimoh O. Pedro ◽  
Muhammed Dangor ◽  
Olurotimi A. Dahunsi ◽  
M. Montaz Ali

This paper presents a differential-evolution- (DE-) optimized, independent multiloop proportional-integral-derivative (PID) controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS) over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS).


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

Sign in / Sign up

Export Citation Format

Share Document