scholarly journals Enhancement of combustion characteristics of VCR diesel engine by optimizing engine parameters

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Prabhakara Rao Ganji ◽  
Rajesh Khana Raju Vysyaraju ◽  
Srinivasa Rao Surapaneni ◽  
B. Karuna Kumar

AbstractIn recent years, engine emissions have been one of the important problems which are of great concern. Hence, there is a growing need to develop engines with reduced emission. In the present study, Variable Compression Ratio diesel engine model has been validated by comparing the simulation results with the experimental. The study is aimed at analyzing the effect of compression ratio, exhaust gas recirculation, fuel injection pressure and start of injection on engine performance and emission characteristics. Using composite desirability technique, the engine parameters have been optimized to achieve lower NOx, soot and ISFC. The optimum combination has been observed at Compression ratio 17.52, Start of injection −30.1 °aTDC, Fuel injection pressure 736.06 bar and Exhaust gas recirculation 28.29%. ISFC, NOx and soot are reduced by 2.37%, 29.11% and 83.81% respectively. Higher Target Fuel Distribution Index indicates the improved mixture homogeneity for the optimized parameters.

Author(s):  
Varun Kumar Singh ◽  
Naushad Ahmad Ansari ◽  
Abhishek Sharma ◽  
Samsher Gautam ◽  
Manish Kumar ◽  
...  

Biodiesel such as linseed oil can be derived from the feedstock of vegetables without disturbing supplies of food and the ecosystem. An experimental and comparative analysis was carried out to explore the effect of exhaust gas recirculation (EGR) and fuel injection pressure (FIP) on the emissions and efficiency of a CRDI diesel engine fuelled with linseed biodiesel/diesel blend. The engine characteristics were calculated using variable EGR (up to 14%) and adjustment of the injection pressure (up to 600 bar) under various load conditions. Multiple regression models were generated to evaluate responses such as Carbon monoxide (CO), Oxides of Nitrogen (NOx), hydrocarbon (HC), Brake power (BP), and Brake thermal efficiency (BTE) using response surface methodology (RSM). For all blends, a combination of FIP and EGR was employed and their impact was evaluated by plotting response surface contour. In RSM, the desirability approach is used to maximize the performance and minimize the emissions parameters of the engine. Linseed/diesel blend ratio 18.3%, FIP 576.76 bar, EGR 7.07%, and load 5.76 kg were estimated to be optimum for the tested engine. From this methodology, it was found that the optimal value of BTE, BP, HC, NOx, and CO is 19.55%, 1.758 kW, 16.7534 ppm, 505.56 ppm, and 0.0676% respectively.


Author(s):  
Fengjun Yan ◽  
Junmin Wang

Fueling control in Diesel engines is not only of significance to the combustion process in one particular cycle, but also influences the subsequent dynamics of air-path loop and combustion events, particularly when exhaust gas recirculation (EGR) is employed. To better reveal such inherently interactive relations, this paper presents a physics-based, control-oriented model describing the dynamics of the intake conditions with fuel injection profile being its input for Diesel engines equipped with EGR and turbocharging systems. The effectiveness of this model is validated by comparing the predictive results with those produced by a high-fidelity 1-D computational GT-Power engine model.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Mingzhang Pan ◽  
Haiqiao Wei ◽  
Dengquan Feng

Exhaust gas recirculation (EGR) has gained prominence as a significant method to control port fuel injection engine knock caused by high compression ratio and high intake pressure (IP). In this paper, the effect of EGR on knock intensity was investigated under various conditions which included different compression ratios (9:1, 10:1, 11:1), IPs (1.0 bar, 1.2 bar, 1.4 bar) and intake temperatures (ITs, 20 °C, 40 °C, 60 °C). The torque output being a crucial variant was also considered. The results showed that EGR effectively reduced the maximum amplitude of pressure oscillations (MAPO) and knock intensity factor (KI20). The effect of EGR on knock resistance was more significant at higher compression ratio, IP, and IT. The output torque of the engine reached a peak value with a suitable EGR ratio which also controlled the intensity of knock under different conditions.


Sign in / Sign up

Export Citation Format

Share Document