Seeding and NP Fertilizer Rates’ Effect on Irrigated Wheat Yield and Water Use Efficiency in Midland Tropical Environment

Author(s):  
Kassu Tadesse Kassaye ◽  
Wubengeda Admasu Yilma
2013 ◽  
Vol 39 (9) ◽  
pp. 1687 ◽  
Author(s):  
Zi-Jin NIE ◽  
Yuan-Quan CHEN ◽  
Jian-Sheng ZHANG ◽  
Jiang-Tao SHI ◽  
Chao LI ◽  
...  

2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


2002 ◽  
Vol 38 (2) ◽  
pp. 237-248 ◽  
Author(s):  
R. Mrabet

Wheat (Triticum aestivum) production using no-tillage is becoming an increasingly accepted management technology. Major obstacles to its adoption in Morocco, however, are exportation of wheat straw from the field and stubble grazing. Among pertinent solutions is the control of these practices. A four-year field study was conducted to determine the effect of residue level under no-tillage on wheat grain and total dry-matter yields, water use and water-use efficiency, and to compare this with conventional tillage systems. The aim was to evaluate whether all the straw produced is needed for no-till cropping or whether partial removal of straw from the field is possible without any adverse effect on production. No-tillage and deep tillage with disk plough performed equally well and subsurface tillage with an off-set disk produced the lowest yields. Both bare and full no-tillage covers depressed wheat production. Uo to 30% of straw produced under no-tillage can be removed without jeopardizing wheat crop performance.


2019 ◽  
Vol 230 ◽  
pp. 62-71 ◽  
Author(s):  
Changlu Hu ◽  
Victor O. Sadras ◽  
Guoyan Lu ◽  
Runze Zhang ◽  
Xueyun Yang ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 522-536 ◽  
Author(s):  
Marwa Gamal Mohamed Ali ◽  
Mahmoud Mohamed Ibrahim ◽  
Ahmed El Baroudy ◽  
Michael Fullen ◽  
El-Said Hamad Omar ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 446-452 ◽  
Author(s):  
Vicente de PR da Silva ◽  
Inajá Francisco de Sousa ◽  
Alexandra L Tavares ◽  
Thieres George F da Silva ◽  
Bernardo B da Silva ◽  
...  

ABSTRACT The water scarcity is expected to intensify in the future and irrigation becomes an essential component of crop production, especially in arid and semiarid regions, where the available water resources are limited. Four field experiments were carried out at tropical environment in Brazil in 2013 and 2014, in order to evaluate the effect of planting date on crop evapotranspiration (ETc), crop coefficient (Kc), growth parameters and water use efficiency (WUE) of coriander (Coriandrum sativum) plants. The planting dates occurred during winter, spring, summer and autumn growing seasons. ETc was obtained through the soil water balance method and the reference evapotranspiration (ETo) through the Penman-Monteith method, using data collected from an automatic weather station located close to the experimental area. The results of the research showed that the mean values of coriander ETc and Kc were 139.8 mm and 0.87, respectively. Coriander water demand is higher in the summer growing season and lower in the winter; however, its yield is higher in the autumn and lower in the winter. Coriander has higher yield and development of its growth variables in the autumn growing season. The results also indicated that the interannual climate variations had significant effects on most growth variables, as yield, ETc and Kc of coriander grown in tropical environment.


2020 ◽  
Vol 112 (3) ◽  
pp. 1778-1793
Author(s):  
Yuping Li ◽  
Hongbing Li ◽  
Suiqi Zhang ◽  
Ying Wang

Sign in / Sign up

Export Citation Format

Share Document