scholarly journals Effects of soil organism interactions and temperature on carbon use efficiency in three different forest soils

Author(s):  
Simin Wang ◽  
Xiaoyun Chen ◽  
Debao Li ◽  
Jianping Wu
1994 ◽  
Vol 128 (1) ◽  
pp. 115-122 ◽  
Author(s):  
P. B. TINKER ◽  
D. M. DURALL ◽  
M. D. JONES

2021 ◽  
Author(s):  
Philipp Gündler ◽  
Alberto Canarini ◽  
Sara Marañón Jiménez ◽  
Gunnhildur Gunnarsdóttir ◽  
Páll Sigurðsson ◽  
...  

<p>Seasonality of soil microorganisms plays a critical role in terrestrial carbon (C) and nitrogen (N) cycling. The asynchrony of immobilization by microbes and uptake by plants may be important for N retention during winter, when plants are inactive. Meanwhile, the known warming effects on soil microbes (decreasing biomass and increasing growth rates) may affect microbial seasonal dynamics and nutrient retention during winter.</p><p>We sampled soils from a geothermal warming site in Iceland (www.forhot.is) which includes three in situ warming levels (ambient, +3 °C, +6 °C). We harvested soil samples at 9 time points over one year and measured the seasonal variation in microbial biomass carbon (Cmic) and nitrogen (Nmic) and microbial physiology (growth and carbon use efficiency) by an <sup>18</sup>O-labelling technique.</p><p>We observed that Cmic and Nmic peaked in winter, followed by a decline in spring and summer. In contrast growth and respiration rates were higher in summer than winter. The observed biomass peak at lower growth rates, suggests that microbial death rates must have declined even more than growth rates. Soil warming increased biomass-specific microbial activity (i.e., growth, respiration, and turnover rates per unit of microbial biomass), prolonging the period of higher microbial activity found in summer into autumn and winter. Microbial carbon use efficiency was unaltered by soil warming. Throughout the seasons, warming reduced Cmic and Nmic, albeit with a stronger effect in winter than summer and restrained winter biomass accumulation by up to 78% compared to ambient conditions. We estimated a reduced microbial winter N storage capacity by 45.5 and 94.6 kg ha<sup>-1</sup> at +3 °C and +6 °C warming respectively compared to ambient conditions. This reduction represents 1.57% and 3.26% of total soil N stocks, that could potentially be lost per year from these soils.</p><p>Our results clearly demonstrate that soil warming strongly decreases microbial C and N immobilization when plants are inactive, potentially leading to higher losses of C and N from warmed soils over winter. These results have important implications as increased N losses may restrict increased plant growth in a future climate.</p>


2021 ◽  
pp. 103709
Author(s):  
Chengcheng Gang ◽  
Zhuonan Wang ◽  
Yongfa You ◽  
Yue Liu ◽  
Rongting Xu ◽  
...  

2005 ◽  
Vol 56 (416) ◽  
pp. 1499-1515 ◽  
Author(s):  
Stephen M. Sieger ◽  
Brian K. Kristensen ◽  
Christine A. Robson ◽  
Sasan Amirsadeghi ◽  
Edward W. Y. Eng ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 2513 ◽  
Author(s):  
Bo Li ◽  
Fang Huang ◽  
Lijie Qin ◽  
Hang Qi ◽  
Ning Sun

The Songnen Plain (SNP) is an important grain production base, and is designated as an ecological red-line as a protected area in China. Natural ecosystems such as the ecological protection barrier play an important role in maintaining the productivity and sustainability of farmland. Carbon use efficiency (CUE), defined as the ratio of net primary productivity (NPP) to gross primary productivity (GPP), represents the ecosystem capacity of transferring carbon from the atmosphere to terrestrial biomass. The understanding of the CUE of natural ecosystems in protected farmland areas is vital to predicting the impact of global change and human disturbances on carbon budgets and evaluating ecosystem functions. To date, the changes in CUE at different time scales and their relationships with climatic factors have yet to be fully understood. CUE and the response to land surface phenology are also deserving attention. In this study, variations in ecosystem CUE in the SNP during 2001–2015 were investigated using Moderate-Resolution Imaging Spectroradiometer (MODIS) GPP and NPP data products estimated using the Carnegie-Ames-Stanford approach (CASA) model. The relationships between CUE and phenological and climate factors were explored. The results showed that ecosystem CUE fluctuated over time in the SNP. The lowest and highest CUE values mainly occurred in May and October, respectively. At seasonal scale, average CUE followed a descending order of Autumn > Summer > Spring. The CUE of mixed forest was greater than that of other ecosystems at both monthly and seasonal scales. Land surface phenology plays an important role in the regulation of CUE. The earlier start (SOS), the later end (EOS) and longer length (LOS) of the growing season would contribute increasing of CUE. Precipitation and temperature affected CUE positively in most areas of the SNP. These findings help explain the CUE of natural ecosystems in the protected farmland areas and improve our understanding of ecosystem carbon allocation dynamics in temperate semi-humid to semi-arid transitional region under climate and phenological fluctuations.


Sign in / Sign up

Export Citation Format

Share Document