Construction of Conservative Numerical Fluxes for the Entropy Split Method

Author(s):  
Björn Sjögreen ◽  
H. C. Yee
2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Alberto Prieto-Arranz ◽  
Luis Ramírez ◽  
Iván Couceiro ◽  
Ignasi Colominas ◽  
Xesús Nogueira

AbstractIn this work, a new discretization of the source term of the shallow water equations with non-flat bottom geometry is proposed to obtain a well-balanced scheme. A Smoothed Particle Hydrodynamics Arbitrary Lagrangian-Eulerian formulation based on Riemann solvers is presented to solve the SWE. Moving-Least Squares approximations are used to compute high-order reconstructions of the numerical fluxes and, stability is achieved using the a posteriori MOOD paradigm. Several benchmark 1D and 2D numerical problems are considered to test and validate the properties and behavior of the presented schemes.


2019 ◽  
Author(s):  
Donna Coffman ◽  
Jiangxiu Zhou ◽  
Xizhen Cai

Abstract Background Causal effect estimation with observational data is subject to bias due to confounding, which is often controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle missing values in covariates.Method Several approaches have been proposed for handling covariate missingness, including multiple imputation (MI), multiple imputation with missingness pattern (MIMP), and treatment mean imputation. However, there are other potentially useful approaches that have not been evaluated, including single imputation (SI) + prediction error (PE), SI+PE + parameter uncertainty (PU), and Generalized Boosted Modeling (GBM), which is a nonparametric approach for estimating propensity scores in which missing values are automatically handled in the estimation using a surrogate split method. To evaluate the performance of these approaches, a simulation study was conducted.Results Results suggested that SI+PE, SI+PE+PU, MI, and MIMP perform almost equally well and better than treatment mean imputation and GBM in terms of bias; however, MI and MIMP account for the additional uncertainty of imputing the missingness.Conclusions Applying GBM to the incomplete data and relying on the surrogate split approach resulted in substantial bias. Imputation prior to implementing GBM is recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fanny Grisetto ◽  
Yvonne N. Delevoye-Turrell ◽  
Clémence Roger

AbstractFlexible use of reactive and proactive control according to environmental demands is the key to adaptive behavior. In this study, forty-eight adults performed ten blocks of an AX-CPT task to reveal the strength of proactive control by the calculation of the proactive behavioral index (PBI). They also filled out the UPPS questionnaire to assess their impulsiveness. The median-split method based on the global UPPS score distribution was used to categorize participants as having high (HI) or low (LI) impulsiveness traits. The analyses revealed that the PBI was negatively correlated with the UPPS scores, suggesting that the higher is the impulsiveness, the weaker the dominance of proactive control processes. We showed, at an individual level, that the PBI increased across blocks and suggested that this effect was due to a smaller decrease in reactive control processes. Notably, the PBI increase was slower in the HI group than in the LI group. Moreover, participants who did not adapt to task demands were all characterized as high impulsive. Overall, the current study demonstrates that (1) impulsiveness is associated with less dominant proactive control due to (2) slower adaptation to task demands (3) driven by a stronger reliance on reactive processes. These findings are discussed in regards to pathological populations.


2000 ◽  
pp. 147-166 ◽  
Author(s):  
Michel Coriat ◽  
Jean Jourdan ◽  
Fabien Boisbourdin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document