Discrete steps of successional pathways differ in kelp forest and urchin barren communities

2021 ◽  
Author(s):  
Roberto A. Uribe ◽  
Marco Ortiz ◽  
Ferenc Jordán
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kindall A. Murie ◽  
Paul E. Bourdeau

AbstractGlobally, kelp forests are threatened by multiple stressors, including increasing grazing by sea urchins. With coastal upwelling predicted to increase in intensity and duration in the future, understanding whether kelp forest and urchin barren urchins are differentially affected by upwelling-related stressors will give insight into how future conditions may affect the transition between kelp forests and barrens. We assessed how current and future-predicted changes in the duration and magnitude of upwelling-associated stressors (low pH, dissolved oxygen, and temperature) affected the performance of purple sea urchins (Strongylocentrotus purpuratus) sourced from rapidly-declining bull kelp (Nereocystis leutkeana) forests and nearby barrens and maintained on habitat-specific diets. Kelp forest urchins were of superior condition to barrens urchins, with ~ 6–9 times more gonad per body mass. Grazing and condition in kelp forest urchins were more negatively affected by distant-future and extreme upwelling conditions, whereas grazing and survival in urchins from barrens were sensitive to both current-day and all future-predicted upwelling, and to increases in acidity, hypoxia, and temperature regardless of upwelling. We conclude that urchin barren urchins are more susceptible to increases in the magnitude and duration of upwelling-related stressors than kelp forest urchins. These findings have important implications for urchin population dynamics and their interaction with kelp.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew S. Edwards ◽  
Brenda Konar

Abstract Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region’s kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.


2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.


2000 ◽  
Vol 34 (2) ◽  
pp. 48-49
Author(s):  
Don Brutzman
Keyword(s):  

2021 ◽  
Author(s):  
Andrew Rassweiler ◽  
Daniel K. Okamoto ◽  
Daniel C. Reed ◽  
David J. Kushner ◽  
Donna M. Schroeder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document