scholarly journals Trophic downgrading reduces spatial variability on rocky reefs

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew S. Edwards ◽  
Brenda Konar

Abstract Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region’s kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.

2020 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Adriana Verges ◽  
Chang Geun Choi ◽  
Hartvig Christie ◽  
Melinda A. Coleman ◽  
...  

Kelps form extensive underwater forests that underpin valuable ecosystem goods and services in temperate and polar rocky coastlines worldwide. Stressors such as ocean warming and pollution are causing regional declines of kelp forests and their associated services worldwide. Kelp forest restoration is becoming a prominent management intervention, but we have little understanding of what drives restoration success at appropriate spatial scales. This is a fundamental issue because of the typical mismatch between the scale of degradation and the scale of the intervention of these systems. Restoration guidelines commonly discuss project elements such as defining goals and metrics of success, the removal or mitigation of relevant stressors and ecological knowledge of the species, but institutional and financial support that underpins all these requirements is rarely discussed or emphasized. We begin to address this gap and review the world’s largest scale kelp restoration projects, involving four countries and six kelp genera, initiated in response to different causes of decline. We argue that to restore kelp at scale, adequate financing and institutional support are critical to overcome ecological and environmental limitations. As kelp restoration efforts progress into a future of increasing climate change, this logistical support element is likely to become even more important as innovative approaches have higher costs.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2008 ◽  
Vol 38 (5) ◽  
pp. 1260-1266 ◽  
Author(s):  
Erik A. Lilleskov ◽  
Philip M. Wargo ◽  
Kristiina A. Vogt ◽  
Daniel J. Vogt

Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the vitality of red spruce fine roots over a regional acid and N deposition gradient in the northeastern USA. We used root N as an indicator of stand N availability and examined its relationship with the abundance of ectomycorrhizal morphotypes. The dominant morphotypes changed in relative abundance as a function of stand N availability. As root N concentrations increased, Piloderma spp. - like, Cenococcum geophilum Fr., and other unidentified mycorrhizal morphotypes declined in abundance, while other smooth-mantled morphotypes increased. Root N concentration in the 1–2 mm diameter class was the best predictor of the abundance of multiple morphotypes. The morphotype responses were consistent with those found in experimental and small-scale studies, suggesting that N availability is altering ectomycorrhizal communities over broad spatial scales in this region. This finding provides an impetus to conduct a more detailed characterization of mycorrhizal community responses to N deposition across large-scale gradients.


2020 ◽  
Vol 651 ◽  
pp. 57-69
Author(s):  
T Wernberg ◽  
M Couraudon-Réale ◽  
F Tuya ◽  
M Thomsen

Disturbances often control community structure by removing large dominant species, allowing new species to colonize. Disturbances vary in intensity and extent, and their effects on resident communities can depend on local environmental conditions. We tested the effects of disturbance intensity and extent on different functional groups of understory species in kelp forests at 4 locations along an ocean climate gradient in Western Australia. We hypothesized that, compared to intact canopies, increasing disturbance intensities (50 and 100% of kelp removal) and extents (2, 4 and 8 m diameter) would promote light-dependent competitors (turf, foliose, articulated coralline and fucoid seaweeds) at the expense of less light-dependent functional groups (invertebrates and encrusting seaweeds). We also hypothesized that these effects would be most pronounced at warmer relative to cooler locations, where metabolic and ecological rates are faster. The first hypothesis was supported; light-dependent understory groups (turfs, in particular) increased, while less light-dependent groups (crusts in particular) decreased with increasing disturbance regimes. However, the second hypothesis was not supported; even though understory communities differed between locations and turf covers were highest at the warmest location, we found no significant interactions between locations and disturbance regimes. Importantly, our results revealed that even small-scale partial canopy loss can have significant effects on kelp-associated communities. The implied community-wide, density-dependent effects have implications for the management and conservation of kelp forests, because restoration of ecological functions must also consider the density of kelp forests, not simply their presence or absence.


2021 ◽  
Author(s):  
Ofer Shamir ◽  
Chen Schwartz ◽  
Chaim Garfinkel ◽  
Nathan Paldor

<p>A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, by adding a small-scale (stochastic) forcing, we find that the parity distribution of the tropical spectrum is sensitive to asymmetries on small spatial scales compared to the observed large-scale spectrum. Physically, such forcing can be thought of as small-scale convection, which is believed to trigger some of the Tropics' large-scale features via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any small-scale asymmetry (symmetric or anti-symmetric) in the forcing leads to symmetric bias in the spectrum, regardless of the source of variability providing the forcing.</p>


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


2019 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Jiake Li ◽  
Cong Mu ◽  
Chenning Deng ◽  
Menghua Ma

Abstract The storm water management models were established at three spatial scales (large, medium, and small) based on a sponge city pilot area in China to explore the hydrological and environmental effects of rainfall conditions and development modes. Results showed the following. (1) Total runoff reduction rates increased from 26.7% to 53.9% for the rainfall event of a 2-year recurrence period as the scale increased. For 5-year and above recurrence periods, total runoff reduction rates were 19.5–49.4%. These rates increased from the small to medium scale and slightly decreased from the medium to large scale. (2) The runoff coefficients were 0.87–0.29, which decreased from the small to medium scale and were basically constant from the medium to large scale. (3) The peak flow reduction rates decreased with increased recurrence periods. The rates increased initially and then decreased at the small scale, whereas the opposite trend occurred at the medium scale. (4) The reduction rates of pollutants were negatively correlated with recurrence periods under the three spatial scales. The pollution load reduction rates were 19.5–54.7%, which increased from the small to medium scale and were basically constant from the medium to large scale.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


2018 ◽  
Vol 69 (4) ◽  
pp. 525 ◽  
Author(s):  
Pablo Pita ◽  
Diana Fernández-Márquez ◽  
Juan Freire

Temperate rocky reefs and kelp forest ecosystems have been severely affected by overfishing, pollution and habitat destruction, and climate change is a major driver of kelp decline in many regions. Although necessary for management, ecological interactions between kelp and fish remain largely unknown in the north-east Atlantic. In the present study, underwater visual censuses (UVC) and univariate and multivariate multiple regression models were used to analyse the spatiotemporal variations in the abundance and habitat use of the rocky reef fish and macroalgae assemblages of Galicia (north-west Spain). The underwater seascape was dominated by large rocks and kelp forests of Laminaria hyperborea, L. ochroleuca and Saccorhiza polyschides. Fish assemblages were ruled by gadids, labrids and sparids. The most frequent fish species were Labrus bergylta (counted in 90% of UVC) and Pollachius pollachius (in 100% of UVC), whereas the most abundant were Boops boops (mean±s.d., 556.4±39.7 individuals ha–1) and L. bergylta (432.10±440.05 individuals ha–1). Fish and macroalgal assemblages showed different spatial preferences and responded strongly to seasonality, wave exposure and depth. To a lesser degree, fish and macroalgal assemblages showed preferences for habitat structure. Moreover, because the findings of the present study indicate that L. bergylta is a good indicator species of the health of rocky reef and kelp forests ecosystems, monitoring of this fish can be helpful for management and conservation actions.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


Sign in / Sign up

Export Citation Format

Share Document