Analysis of the starch properties in tetraploid wheat–Aegilops sharonensis amphidiploid

Author(s):  
Qing Li ◽  
Xuteng Zhang ◽  
Na Lin ◽  
Guzmán Carlos ◽  
Jingyu Lan ◽  
...  
1972 ◽  
Vol 14 (3) ◽  
pp. 463-475 ◽  
Author(s):  
T. Mello-Sampayo

Tetraploid wheat plants monosomic 5B-trisomic 5A were obtained by crossing nullisomic 5B-tetrasomic 5A plants of Triticum aestivum with T. durum and backcrossing five times with T. durum. These plants were found to carry a translocated 5A-5D chromosome. By self-pollination they originated plants carrying both a 5A-5D and 5B-5D translocated chromosome. In the latter the break point was located distally to the pairing suppressor gene. The translocations must have occurred by homoeologous pairing and recombination in the long arm of chromosomes of the group 5. F1 hybrids of monosomic 5B-trisomic 5A plants with rye and Aegilops sharonensis showed high homologous pairing when 5B was absent. Pairing promotion associated with the terminal segment of the long arm of 5D attached to the 5B-5D chromosome end was detected. It was suggested that the long arm of chromosomes of the homoeologous group 5 of wheat might carry two separate loci with genes for antagonistic effects on the pairing of chromosomes.


Genetics ◽  
1981 ◽  
Vol 99 (3-4) ◽  
pp. 495-512
Author(s):  
U Kushnir ◽  
G M Halloran

ABSTRACT A number of lines of evidence are advanced for the candidacy of Aegilops sharonensisEig as the donor of the B genome of wheat. The cytoplasm of Ae. shuronensis iscompatible with tetraploid wheat Triticum turgidum dicoccoides,as evidenced bythe high level of chromosome pairing and fertility of the amphiploid Ae. sharonensisx T. turgidum dicoccoides. Ae. sharonensischromosomes exhibit high levels of pairing with those of the B genome of wheat in hybrids with Ph-deficient hexaploid wheat and low levels of homoeologous pairing with T. monocmcumchromosomes.——The amphidiploid between Ae. sharonensisand T. monococcumis very similar to T. turgidum dicoccoidesin spike, spikelet and grain morphology. The karyotype of Ae. sharonensisresembles more closely that of extrapolated Bgenome karyotypes of wheat than do the karyotypes of other proposed B-genome donor species of Aegilops. Because of distinctiveness in cytological aftinity and karyotype morphology between Ae. sharonensisand Ae. longissima,a separate genome symbol Sshis proposed for the former species.


2014 ◽  
Vol 61 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Qian-Tao Jiang ◽  
Quan-Zhi Zhao ◽  
Qiang Yang ◽  
Jian Ma ◽  
Xiao-Wei Zhang ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1651-1659 ◽  
Author(s):  
Khalil Kashkush ◽  
Moshe Feldman ◽  
Avraham A Levy

Abstract We analyzed the events that affect gene structure and expression in the early stages of allopolyploidy in wheat. The transcriptome response was studied by analyzing 3072 transcripts in the first generation of a synthetic allotetraploid (genome SlSlAmAm), which resembles tetraploid wheat (genome BBAA), and in its two diploid progenitors Aegilops sharonensis (SlSl) and Triticum monococcum ssp. aegilopoides (AmAm). The expression of 60 out of 3072 transcripts was reproducibly altered in the allotetraploid: 48 transcripts disappeared and 12 were activated. Transcript disappearance was caused by gene silencing or by gene loss. Gene silencing affected one or both homeologous loci and was associated in part with cytosine methylation. Gene loss or methylation had occurred already in the F1 intergeneric hybrid or in the allotetraploid, depending on the locus. The silenced/lost genes included rRNA genes and genes involved in metabolism, disease resistance, and cell cycle regulation. The activated genes with a known function were all retroelements. These findings show that wide hybridization and chromosome doubling affect gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation. These events contribute to the genetic diploidization of newly formed allopolyploids.


Crop Science ◽  
1992 ◽  
Vol 32 (2) ◽  
pp. 366-369 ◽  
Author(s):  
Luther E. Talbert ◽  
Susan L. Moylan ◽  
LeRoy J. Hansen

2001 ◽  
Vol 78 (4) ◽  
pp. 417-420 ◽  
Author(s):  
Trust Beta ◽  
Harold Corke

2021 ◽  
Author(s):  
Mei Zheng ◽  
Jingchen Lin ◽  
Xingbei Liu ◽  
Wei Chu ◽  
Jinpeng Li ◽  
...  

Abstract Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating ROS production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.


Author(s):  
Matthew C. Allan ◽  
Nicholas Marinos ◽  
Suzanne D. Johanningsmeier ◽  
Ai Sato ◽  
Van‐Den Truong

2021 ◽  
Author(s):  
Baljeet K. Gill ◽  
Daryl L. Klindworth ◽  
Matthew N. Rouse ◽  
Jinglun Zhang ◽  
Qijun Zhang ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Moran Nave ◽  
Mihriban Taş ◽  
John Raupp ◽  
Vijay K. Tiwari ◽  
Hakan Ozkan ◽  
...  

Triticum turgidum and T. timopheevii are two tetraploid wheat species sharing T. urartu as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes). We previously described the loss-of-function mutations in the Brittle Rachis 1 genes BTR1-A and BTR1-B in the A and B subgenomes, respectively, that are responsible for this most visible domestication trait in T. turgidum. Resequencing of a large panel of wild and domesticated T. turgidum accessions subsequently led to the identification of the two progenitor haplotypes of the btr1-A and btr1-B domesticated alleles. Here, we extended the haplotype analysis to other T. turgidum subspecies and to the BTR1 homologues in the related T. timopheevii species. Our results showed that all the domesticated wheat subspecies within T. turgidum share common BTR1-A and BTR1-B haplotypes, confirming their common origin. In T. timopheevii, however, we identified a novel loss-of-function btr1-A allele underlying a partially brittle spike phenotype. This novel recessive allele appeared fixed within the pool of domesticated Timopheev’s wheat but was also carried by one wild timopheevii accession exhibiting partial brittleness. The promoter region for BTR1-B could not be amplified in any T. timopheevii accessions with any T. turgidum primer combination, exemplifying the gene-level distance between the two species. Altogether, our results support the concept of independent domestication processes for the two polyploid, wheat-related species.


Sign in / Sign up

Export Citation Format

Share Document