scholarly journals Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat–Thinopyrum intermedium translocation line WTT11

aBIOTECH ◽  
2021 ◽  
Author(s):  
Guotang Yang ◽  
Qi Zheng ◽  
Pan Hu ◽  
Hongwei Li ◽  
Qiaoling Luo ◽  
...  

AbstractStripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Xiaoyan 78829, a partial amphidiploid developed by crossing common wheat with Thinopyrum intermedium, is immune to wheat stripe rust. To transfer the resistance gene of this excellent germplasm resource to wheat, the translocation line WTT11 was produced by pollen irradiation and assessed for immunity to stripe rust races CYR32, CYR33 and CYR34. A novel stripe rust-resistance locus derived from Th. intermedium was confirmed by linkage and diagnostic marker analyses. Molecular cytogenetic analyses revealed that WTT11 carries a TTh·2DL translocation. The breakpoint of 1B was located at 95.5 MB, and the alien segments were found to be homoeologous to wheat-group chromosomes 6 and 7 according to a wheat660K single-nucleotide polymorphism (SNP) array analysis. Ten previously developed PCR-based markers were confirmed to rapidly trace the alien segments of WTT11, and 20 kompetitive allele-specific PCR (KASP) markers were developed to enable genotyping of Th. intermedium and common wheat. Evaluation of agronomic traits in two consecutive crop seasons uncovered some favorable agronomic traits in WTT11, such as lower plant height and longer main panicles, that may be applicable to wheat improvement. As a novel genetic resource, the new resistance locus may be useful for wheat disease-resistance breeding.

Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1482-1487 ◽  
Author(s):  
Qiang Li ◽  
Jing Huang ◽  
Lu Hou ◽  
Pei Liu ◽  
Jinxue Jing ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars, but only a few effective genes are available. The wheat accession H9020-1-6-8-3 is a translocation line previously developed from interspecific hybridization between wheat genotype 7182 and Psathyrostachys huashanica, and is resistant to most Chinese Puccinia striiformis f. sp. tritici races. To identify the resistance genes in the translocation line, H9020-1-6-8-3 was crossed with susceptible genotype Mingxian 169, and seedlings of parents and F1, F2, and F3 progenies were tested with prevalent Chinese P. striiformis f. sp. tritici races CYR32 and CYR33 under controlled greenhouse conditions. The genetic results indicated that two single dominant genes in H9020-1-6-8-3 confer resistance to CYR32 and CYR33, respectively. The gene for resistance to CYR33 was temporarily designated as YrH9020. Six simple-sequence repeat markers were used to map the resistance gene to the short arm of wheat chromosome 2D, using 329 F2 plants tested with CYR33 in the greenhouse. The genetic distances of the two closest flanking markers, Xgwm261 and Xgwm455, were 4.4 and 5.8 centimorgans, respectively. Disease assessments and polymorphic tests of the flanking markers among the Psathyrostachys huashanica line and wheat lines 7182, H9020-1-6-8-3, and Mingxian169 suggested that the resistance gene YrH9020 in H9020-1-6-8-3 was originally from P. huashanica. The exotic stripe rust resistance gene and linked molecular markers should be useful for pyramiding with other genes to develop wheat cultivars with high-level and durable resistance to stripe rust.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1166-1171 ◽  
Author(s):  
Mesfin Gessese ◽  
Harbans Bariana ◽  
Debbie Wong ◽  
Matthew Hayden ◽  
Urmil Bansal

The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 508-511 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
C. X. Lan ◽  
J. Huerta-Espino ◽  
V. Calvo-Salazar ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici W., is a devastating disease of wheat worldwide. A new stripe rust resistance gene with moderate seedling and adult plant resistance was mapped using an F5 recombinant inbred line (RIL) population developed from the cross of the resistant parent ‘Almop’ with the susceptible parent ‘Avocet’. The parents and RILs were phenotyped for seedling stripe rust response variation in a greenhouse and in field trials at Toluca, Mexico for 2 years. Almop showed moderate levels of resistance at both seedling and adult plant stages compared with the highly susceptible response of Avocet. The distribution of homozygous resistant, homozygous susceptible, and segregating RILs conformed to segregation at a single locus. Seedlings and adult plant responses were correlated, indicating that the same gene conferred resistance at both stages. A bulk segregant analysis approach with widely distributed simple sequence repeat (SSR) markers mapped the resistance gene to the distal region of the long arm of chromosome 4A. The SSR marker wmc776 cosegregated with this gene, whereas markers wmc219 and wmc313 were tightly linked and both located at 0.6 centimorgans. The resistance locus was designated Yr60.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Biran Gong ◽  
Wei Zhu ◽  
Sanyue Li ◽  
Yuqi Wang ◽  
Lili Xu ◽  
...  

Abstract Background Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. Results Here, we report the development and characterization of two wheat–E. repens lines derived from the progeny of common wheat–E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15–1192-2 and K15–1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15–1192-2 was a wheat–E. repens 3D/?St double terminal chromosomal translocation line. Line K15–1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat–E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15–1192-2 and K15–1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. Conclusions Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.


2010 ◽  
Vol 90 (2) ◽  
pp. 57-63 ◽  
Author(s):  
Pei-Gao Luo ◽  
Xue-Yun Hu ◽  
Zhi-Jian Chang ◽  
Min Zhang ◽  
Huai-Qiong Zhang ◽  
...  

Wheat stripe rust (Puccinia striiforis f. sp. tritici) races CYR31 and CYR32, prevalent in China, are virulent to many wheat stripe rust resistance genes (Yr genes). To expand the availability of effective resistance to CYR31 and CYR32, stripe rust resistance was transferred from intermediate wheatgrass (Thinopyrum intermedium) to common wheat (Triticum aestivum). The susceptible wheat cultivar CM107 was crossed with amphiploid TAI7047, derived from the wide cross Taiyuan768/Thinopyrum intermedium//76(64). Two wheat lines originating from the cross, YU24 and YU25, were resistant to CYR31 and CYR32. Pedigree analysis showed that the resistance to stripe rust in YU24 and YU25 originated from intermediate wheatgrass. Genetic analyses indicated that the resistance to stripe rust is controlled by a single dominant gene. Allelic tests determined that the resistance gene(s) in YU24 and YU25 are identical. The new gene has temporarily been designated as YrYU25. SSR and RAPD analyses showed that YrYU25 was introduced by cryptic translocation into common wheat.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1751-1762 ◽  
Author(s):  
Jianhui Wu ◽  
Xiaoting Wang ◽  
Nan Chen ◽  
Rui Yu ◽  
Shizhou Yu ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive fungal diseases of wheat worldwide. The expanding Yr26-virulent Pst race (V26) group overcomes almost all currently deployed resistance genes in China and has continued to accumulate new virulence. Investigating the genetic architecture of stripe rust resistance in common wheat is an important basis for a successful utilization of resistance in breeding programs. A panel of 410 exotic wheat germplasms was used for characterizing new stripe rust resistance loci. This panel was genotyped using high-density wheat 660K single-nucleotide polymorphism (SNP) array, and phenotypic evaluation of seedlings for stripe rust resistance was performed using multiple Pst races. Thirty-five loci conferring resistance were identified through genome-wide association mapping, and explained phenotypic variances ranged from 53 to 75%. Of these, 14 were colocated in the proximity of the known loci, including cataloged Yr genes Yr9, Yr10, Yr26, Yr33, Yr47, Yr56, Yr57, Yr64, Yr67, Yr72, and Yr81 and three temporarily designated as YrCen, YrNP63, and YrRC detected in our quantitative trait locus (QTL) mapping studies. Seven of them (Yr9, Yr10, Yr24/26, Yr81, YrCEN, YrNP63, and YrRC) were confirmed by molecular detection or genetic analysis. New loci that were identified to be different from reported Yr genes need further confirmation. Nine QTL with significantly large phenotypic effect on resistance to all tested races were considered as major loci for effective resistance. The identified loci enrich our stripe rust resistance gene pool, and the linked SNPs should be useful for marker-assisted selection in breeding programs.


2019 ◽  
Vol 109 (5) ◽  
pp. 819-827 ◽  
Author(s):  
Shuo Huang ◽  
Jianhui Wu ◽  
Xiaoting Wang ◽  
Jingmei Mu ◽  
Zhi Xu ◽  
...  

Breeding for resistance to stripe rust (caused by Puccinia striiformis f. tritici) is essential for reducing losses in yield and quality in wheat. To identify genes for use in breeding, a biparental population of 186 recombinant inbred lines (RILs) from a cross of the Chinese landrace Mingxian 169 and CIMMYT-derived line P9936 was evaluated in field nurseries either artificially or naturally inoculated in two crop seasons. Each of the RILs and parents was genotyped with the wheat 55K single-nucleotide polymorphism (SNP) ‘Breeders’ array and a genetic linkage map with 8,225 polymorphic SNP markers spanning 3,593.37 centimorgans was constructed. Two major quantitative trait loci (QTL) and two minor QTL were identified. The major QTL QYr.nwafu-3BS.2 and QYr.nwafu-7BL on chromosomes arms 3BS and 7BL were detected in all field locations and explained an average 20.4 and 38.9% of phenotypic variation stripe rust severity, respectively. QYr.nwafu-3BS.2 likely corresponds to the locus Yr30/Sr2 and QYr.nwafu-7BL may be a resistance allele identified previously in CIMMYT germplasm. The other minor QTL had limited individual effects but increased resistance when in combinations with other QTL. Markers linked to QYr.nwafu-7BL were converted to kompetitive allele-specific polymerase chain reaction markers and validated in a panel of wheat accessions. Wheat accessions carrying the same haplotype as P9936 at the identified SNP loci had lower average stripe rust severity than the average severity of all other haplotypes.


2009 ◽  
Vol 89 (3) ◽  
pp. 569-574 ◽  
Author(s):  
F. Lin ◽  
Q. Sun ◽  
S. Xu ◽  
X. Chen ◽  
L. Zhang ◽  
...  

Thinopyrum intermedium carries many useful traits for wheat genetic improvement. To identify genes conferring resistance to stripe rust caused by Puccinia striiformis f. sp. tritici in Zhong4, one of the Zhong series of partial amphiploids from the hybrids of common wheat × Th. intermedium, a cross was made between Zhong4 and a Chinese Spring ph1b mutant (CS-ph1b). The parents, F1, F2 plants and F5 lines of the cross were tested with Chinese predominant race CYR31 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Of 201 F2 seedlings tested with race CYR31, 149 were resistant and 52 were susceptible. The segregation fit a 3 resistant:1 susceptible ratio, indicating that a single dominant gene conferred resistance to the race CYR31. This result was further confirmed by the segregation of F5 lines into 1:1 ratio (P = 0.77). Using the Schiff dyeing method, the chromosome number in the root-tip cells of 10 F5 resistant lines (total 42 plants) was determined. Two alien addition lines (5-1-2-1-1-5, 5-1-2-1-1-6) with the smallest chromosome number (2n = 42 + II) were identified. A total of 105 pollen mother cells were examined at metaphase 1 (PMCs MI) for meiotic chromosome pairing. The lines 5-1-2-1-1-5 and 5-1-2-1-1-6 showed regular meiosis, exhibiting 22 ring or rod bivalents (2n = 22 II). The GISH results indicated that lines 5-1-2-1-1-5 and 5-1-2-1-1-6 were wheat-Th. intermedium alien disomic addition lines with 21 pairs of wheat chromosomes and one pair of Th. intermedium chromosomes. These two lines were all resistant to stripe rust, suggesting that they can be used as donors of stripe rust resistance genes and have great potential to play important roles in wheat stripe rust resistance breeding programs in China and the world.Key words: Wheat-Thinopyrum intermedium, stripe rust, GISH, cytological identification


Genome ◽  
2017 ◽  
Vol 60 (5) ◽  
pp. 393-401 ◽  
Author(s):  
Hou-Yang Kang ◽  
Lin Tang ◽  
Dai-Yan Li ◽  
Cheng-Dou Diao ◽  
Wei Zhu ◽  
...  

To transfer multiple desirable alien genes into common wheat, we previously reported a new trigeneric hybrid synthesized by crossing a wheat – Thinopyrum intermedium partial amphiploid with wheat – Psathyrostachys huashanica amphiploid. Here, the meiotic behavior, chromosome constitution, and stripe rust resistance of F5 derivatives from the wheat – Th. intermedium – P. huashanica trigeneric hybrid were studied. Cytological analysis indicated the F5 progenies had chromosome numbers of 42–50 (average 44.96). The mean meiotic configuration was 1.28 univalents, 21.74 bivalents, 0.04 trivalents, and 0.02 tetravalents per pollen mother cell. In 2n = 42 lines, the average pairing configuration was 0.05 I + 19.91 II (ring) + 1.06 II (rod) + 0.003 IV, suggesting these lines were cytologically stable. Most lines with 2n = 43, 44, 46, 48, or 50, bearing a high frequency of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization karyotyping results revealed that 25 lines contained 1–7 Th. intermedium chromosomes, but no P. huashanica chromosomes were found among the 27 self-pollinated progenies. At meiosis, univalents (1–5) possessing Th. intermedium hybridization signals were detected in 19 lines. Bivalents (1–3) expressing fluorescence signals were observed in 12 lines. Importantly, 21 lines harbored wheat – Th. intermedium chromosomal translocations with various alien translocation types. Additionally, two homozygous lines, K13-668-10 and K13-682-12, possessed a pair of wheat – Th. intermedium small fragmental translocations. Compared with the recurrent parent Zhong 3, most lines showed high resistance to the stripe rust (Puccinia striiformis f. sp. tritici) pathogens prevalent in China, including race V26/Gui22. This paper reports a highly efficient technical method for inducing alien translocation between wheat and Th. intermedium by trigeneric hybridization. These lines might be potentially valuable germplasm resources for further wheat improvement.


Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


Sign in / Sign up

Export Citation Format

Share Document