scholarly journals Placenta Percreta Presents with Neoangiogenesis of Arteries with Von Willebrand Factor-Negative Endothelium

Author(s):  
Alexander Schwickert ◽  
Wolfgang Henrich ◽  
Martin Vogel ◽  
Kerstin Melchior ◽  
Loreen Ehrlich ◽  
...  

Abstract In placenta percreta cases, large vessels are present on the precrete surface area. As these vessels are not found in normal placentation, we examined their histological structure for features that might explain the pathogenesis of neoangiogenesis induced by placenta accreta spectrum disorders (PAS). In two patients with placenta percreta (FIGO grade 3a) of the anterior uterine wall, one strikingly large vessel of 2 cm length was excised. The samples were formalin fixed and paraffin-embedded. Gomori trichrome staining was used to evaluate the muscular layers and Weigert-Van Gieson staining for elastic fibers. Immunohistochemical staining of the vessel endothelium was performed for Von Willebrand factor (VWF), platelet endothelial cell adhesion molecule (CD31), Ephrin B2, and EPH receptor B4. The structure of the vessel walls appeared artery-like. The vessel of patient one further exhibited an unorderly muscular layer and a lack of elastic laminae, whereas these features appeared normal in the vessel of the other patient. The endothelium of both vessels stained VWF-negative and CD31-positive. In conclusion, this study showed VWF-negative vessel endothelia of epiplacental arteries in placenta accreta spectrum. VWF is known to regulate artery formation, as the absence of VWF has been shown to cause enhanced vascularization. Therefore, we suppose that PAS provokes increased vascularization through suppression of VWF. This process might be associated with the immature vessel architecture as found in one of the vessels and Ephrin B2 and EPH receptor B4 negativity of both artery-like vessels. The underlying pathomechanism needs to be evaluated in a greater set of patients.

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e39-e40
Author(s):  
Alexander Schwickert ◽  
Wolfgang Henrich ◽  
Martin Vogel ◽  
Kerstin Melchior ◽  
Loreen Ehrlich ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4137-4144 ◽  
Author(s):  
Claudio C. Werneck ◽  
Cristina P. Vicente ◽  
Justin S. Weinberg ◽  
Adrian Shifren ◽  
Richard A. Pierce ◽  
...  

Abstract Mice lacking the extracellular matrix protein microfibril-associated glycoprotein-1 (MAGP1) display delayed thrombotic occlusion of the carotid artery following injury as well as prolonged bleeding from a tail vein incision. Normal occlusion times were restored when recombinant MAGP1 was infused into deficient animals prior to vessel wounding. Blood coagulation was normal in these animals as assessed by activated partial thromboplastin time and prothrombin time. Platelet number was lower in MAGP1-deficient mice, but the platelets showed normal aggregation properties in response to various agonists. MAGP1 was not found in normal platelets or in the plasma of wild-type mice. In ligand blot assays, MAGP1 bound to fibronectin, fibrinogen, and von Willebrand factor, but von Willebrand factor was the only protein of the 3 that bound to MAGP1 in surface plasmon resonance studies. These findings show that MAGP1, a component of microfibrils and vascular elastic fibers, plays a role in hemostasis and thrombosis.


1986 ◽  
Vol 55 (02) ◽  
pp. 276-278 ◽  
Author(s):  
F Brosstad ◽  
Inge Kjønniksen ◽  
B Rønning ◽  
H Stormorken

SummaryA method for visualization of the multimeric forms of von Willebrand Factor (vWF) in plasma and platelets is described. The method is based upon: 1) Separation of the vWF multimers by SDS-agarose electrophoresis, 2) Subsequent blotting of the vWF multimers onto nitrocellulose, 3) Immunolocalization and visualization of the vWF pattern by the sequential incubation of the blot with a) primary vWF antiserum, b) peroxidase- or beta-galactosidase-conjugated secondary antibodies and a relevant chromogenic substrate.


1988 ◽  
Vol 60 (02) ◽  
pp. 182-187 ◽  
Author(s):  
Morio Aihara ◽  
Ken Tamura ◽  
Ryuko Kawarada ◽  
Keizou Okawa ◽  
Yutaka Yoshida

SummaryThe adhesion of human fixed washed platelets (FWP) to collagen was decreased after treatment with Serratia marcescens protease (SP), which removed 95% of the glycocalicin from platelet membrane glycoprotein (GP) lb. However, the diminished adhesion of SP treated FWP to collagen could still be increased in the presence of purified von Willebrand factor (vWF). This ability of vWF to increase FWP adhesion to collagen is defined as collagen cofactor (CCo). The adhesion of FWP to collagen was not affected by a monoclonal antibody (MAb) to GP Ilb/IIIa (10E5), that inhibits ADP and collagen induced platelet aggregation. On the other hand, it was decreased by 50% by a MAb to GP lb (6D1), that inhibits ristocetin induced platelet aggregation. Adhesion of FWP in buffer to collagen was completely inhibited by Ricinus communis agglutinin I or concanavalin A, while Lens culinalis agglutinin and wheat germ agglutinin showed 50% inhibition. The FWP adhesion to collagen in the presence of vWF (normal plasma) was unaffected by MAbs to GP Ilb/IIIa (10E5, P2, HPL1) but was decreased to 32-38% by MAbs to GP lb (6D1, AN51, HPL11). A MAb to vWF (CLB-RAg 35), that inhibits ristocetin induced binding of vWF to platelets, decreased the CCo of normal plasma by 70%. The MAb, CLB-RAg 201, that inhibits the binding of vWF to collagen, completely inhibited the CCo of normal plasma. In conclusion, our data suggest that (1) GP lb has a partial role in FWP adhesion to collagen; (2) the binding of vWF to collagen is required for the expression of CCo; (3) CCo is partly mediated through GP lb; but (4) other platelet membrane protein(s) besides GP lb or GP Ilb/IIIa must also be involved in FWP-vWF-collagen interactions.


Sign in / Sign up

Export Citation Format

Share Document