Airborne geophysical data interpretation of the southeast portion of Parnaíba Basin, Brazil

2020 ◽  
Vol 5 (2) ◽  
pp. 247-256
Author(s):  
Márcio Cisnaldo de Souza ◽  
Francisco Dourado ◽  
Miguel Ângelo Mane
Author(s):  
Ismael Enrique Moyano Nieto ◽  
Renato Cordani ◽  
Lorena Paola Cárdenas Espinosa ◽  
Norma Marcela Lara Martínez ◽  
Oscar Eduardo Rojas Sarmiento ◽  
...  

This paper focuses on presentation of the methodology used by geophysicists at the Servicio Geológico Colombiano (SGC) for the processing, anomaly selection and interpretation of airborne magnetometry and gamma spectrometry data. Three (3) selected magnetic anomalies from different geological settings (Andes Cordillera, San Lucas Range and Amazon region) are presented as examples. 3D magnetic vector inversion (MVI) modeling of each of the selected magnetic anomalies shows magnetic sources less than 100 m deep or exposed with sizes from 2.5 to 6 km. The magnetic data interpretation also allows the identification of linear features that could represent structural control for fluid migration and/or ore emplacement. Additionally, the integration of the geophysical data with other geoscientific information (geologic, metallogenic and geochemical data) leads to the proposition of an exploration model for each anomaly: intrusion-related/VMS deposits for the Andes, porphyry/intrusion-related/epithermal deposits for San Lucas and carbonatite/kimberlite for Amazonas. The methodology used and examples presented illustrate the potential of SGC airborne geophysical data for mineral resource evaluation and as input for the design of fieldwork for geological, geophysical, geochemical and metallogenic characterization of an area of interest.


Author(s):  
Thorkild M. Rasmussen ◽  
Jeroen A.M. Van Gool

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, T. M., & van Gool, J. A. (2000). Aeromagnetic survey in southern West Greenland: project Aeromag 1999. Geology of Greenland Survey Bulletin, 186, 73-77. https://doi.org/10.34194/ggub.v186.5218 _______________ The acquisition of public airborne geophysical data from Greenland that commenced in 1992 continued in 1999 with project Aeromag 1999, an aeromagnetic survey of part of southern West Greenland. This paper presents results of the aeromagnetic survey and discusses the correlation of the measured data with the previously mapped surface geology. The project was financed by the Government of Greenland and managed by the Geological Survey of Denmark and Greenland. Sander Geophysics Ltd., Ottawa, Canada, was selected in April 1999 as the contractor for the project through a European Union opentender procedure.


Author(s):  
Thorkild M. Rasmussen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article. Rasmussen, T. M. (1). Aeromagnetic survey in central West Greenland: project Aeromag 2001. Geology of Greenland Survey Bulletin, 191, 67-72. https://doi.org/10.34194/ggub.v191.5130 The series of government-funded geophysical surveys in Greenland was continued during the spring and summer of 2001 with a regional aeromagnetic survey north of Uummannaq, project Aeromag 2001 (Fig. 1). The survey added about 70 000 line kilometres of high-quality magnetic measurements to the existing database of modern airborne geophysical data from Greenland. This database includes both regional high-resolution aeromagnetic surveys and detailed surveys with combined electromagnetic and magnetic airborne measurements.


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 271 ◽  
Author(s):  
Michael Zhdanov ◽  
Fouzan Alfouzan ◽  
Leif Cox ◽  
Abdulrahman Alotaibi ◽  
Mazen Alyousif ◽  
...  

2012 ◽  
Vol 31 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Glenn A. Wilson ◽  
Leif H. Cox ◽  
Martin Čuma ◽  
Michael S. Zhdanov

2021 ◽  
Author(s):  
Mariia Kurianova ◽  
Ekaterina Birkle ◽  
Tatiana Egorkina ◽  
Sergey Koltsov

Abstract The article considers the approaches to the G&G data interpretation used in the Branch Office of Gazprom International in Saint Petersburg (hereinafter referred to as "GPEPI") when studying the geology aspects of turbidite deposits. This approach is showcased on one of the Upper Miocene deposits of the Nam Con Son Basin in Vietnam, and a conclusion is drawn about the possibility of using this complex technique in the study of sand bodies of any genesis.


Sign in / Sign up

Export Citation Format

Share Document