scholarly journals Profit optimization for multi-mode repetitive construction project with cash flows using metaheuristics

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Bartłomiej Sroka ◽  
Jerzy Rosłon ◽  
Michał Podolski ◽  
Wojciech Bożejko ◽  
Anna Burduk ◽  
...  

AbstractThe article presents the profit optimization model for multi-unit construction projects. Such projects constitute a special case of repetitive projects and are common in residential, commercial, and industrial construction projects. Due to the specific character of construction works, schedules of such projects should take into account many different aspects, including durations and costs of construction works, the possibility of selecting alternative execution modes, and specific restrictions (e.g., deadlines for the completion of units imposed by the investor). To solve the NP-hard problem of choosing the order of units’ construction and the best variants of works, the authors used metaheuristic algorithms (simulated annealing and genetic search). The objective function in the presented optimization model was the total profit of the contractor determined on the basis of the mathematical programming model. This model takes into account monthly cash flows subject to direct and indirect costs, penalties for missing deadlines, costs of work group discontinuities, and borrowing losses. The presented problem is very important for maintaining a good financial condition of the enterprise carrying out construction projects. In the article, an experimental analysis of the proposed method of solving the optimization task was carried out in a model that showed high efficiency in obtaining suboptimal solutions. In addition, the operation of the proposed model has been presented on a calculation example. The results obtained in it are fully satisfying.

2019 ◽  
Vol 25 (8) ◽  
pp. 848-857
Author(s):  
Michał Podolski ◽  
Bartłomiej Sroka

The article presents the cost optimization model for multiunit construction projects. Multiunit projects constitute a special case of repetitive projects. They consist in the realization of many different, when it comes to size, types of residential, commercial, industrial buildings or engineering structures. Due to the specific character of construction works, actual schedules of such projects should not only take into account real costs of construction, but also be subject to specific restrictions, e.g. deadlines for the completion of units imposed by the investor. To solve the NP-hard problem of choosing the order of units’ construction there was metaheuristic algorithm of simulated annealing used. The objective function in the presented optimization model was the total value of the project cost determined on the basis of the mathematical programming model, taking into account direct and indirect costs, costs of missing deadlines and costs of work group discontinuities. In the article, an experimental analysis of the proposed method of solving the optimization task was carried out in a model that showed high efficiency in obtaining suboptimal solutions. In addition, the operation of the proposed model has been presented on a calculation example. The results obtained in it are fully satisfying.


2012 ◽  
Vol 166 (4) ◽  
pp. 68-79
Author(s):  
Zdzisław HEJDUCKI ◽  
Michał PODOLSKI

The paper presents the authors’ research on the application of metaheuristic algorithms in Time Coupling Methods (TCM). The experimental analysis of algorithms: tabu search, genetic search, simulated annealing and B&B algorithm was conducted in the paper. The application of these algorithms, which are currently used to solve job scheduling problems, allows one to obtain better suboptimal solutions than with the currently used B&B algorithm. The main branch of the authors’ research is developing the methodology of construction works scheduling with the application of TCM 17,8,9 1013. The problems of scheduling linear construction works using time-cost optimisation are worked out.


2021 ◽  
Vol 13 (11) ◽  
pp. 5795
Author(s):  
Sławomir Biruk ◽  
Łukasz Rzepecki

Reducing the duration of construction works requires additional organizational measures, such as selecting construction methods that assure a shorter realization time, engaging additional resources, working overtime, or allowing construction works to be performed simultaneously in the same working units. The simultaneous work of crews may affect the quality of works and the efficiency of construction processes. This article presents a simulation model aimed at assessing the impact of the overlap period on the extension of the working time of the crews and the reduction of a repetitive project’s duration in random conditions. The purpose of simulation studies is to provide construction managers with guidelines when deciding on the dates of starting the sequential technological process lines realized by specialized working crews, for sustainable scheduling and organization of construction projects.


2017 ◽  
Vol 9 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Sławomir Biruk ◽  
Piotr Jaśkowski ◽  
Agata Czarnigowska

AbstractThe authors aim to provide a set of tools to facilitate the main stages of the competitive bidding process for construction contractors. These involve 1) deciding whether to bid, 2) calculating the total price, and 3) breaking down the total price into the items of the bill of quantities or the schedule of payments to optimise contractor cash flows. To define factors that affect the decision to bid, the authors rely upon literature on the subject and put forward that multi-criteria methods are applied to calculate a single measure of contract attractiveness (utility value). An attractive contract implies that the contractor is likely to offer a lower price to increase chances of winning the competition. The total bid price is thus to be interpolated between the lowest acceptable and the highest justifiable price based on the contract attractiveness. With the total bid price established, the next step is to split it between the items of the schedule of payments. A linear programming model is proposed for this purpose. The application of the models is illustrated with a numerical example.The model produces an economically justified bid price together with its breakdown, maintaining the logical proportion between unit prices of particular items of the schedule of payment. Contrary to most methods presented in the literature, the method does not focus on the trade-off between probability of winning and the price but is solely devoted to defining the most reasonable price under project-specific circumstances.The approach proposed in the paper promotes a systematic approach to real-life bidding problems. It integrates practices observed in operation of construction enterprises and uses directly available input. It may facilitate establishing the contractor’s in-house procedures and managerial decision support systems for the pricing process.


2021 ◽  
pp. 1-10
Author(s):  
Zhaoping Tang ◽  
Wenda Li ◽  
Shijun Yu ◽  
Jianping Sun

In the initial stage of emergency rescue for major railway emergencies, there may be insufficient emergency resources. In order to ensure that all the emergency demand points can be effectively and fairly rescued, considering the fuzzy properties of the parameters, such as the resource demand quantity, the dispatching time and the satisfaction degree, the railway emergency resources dispatching optimization model is studied, with multi- demand point, multi-depot, and multi-resource. Based on railway rescue features, it was proposed that the couple number of relief point - emergency point is the key to affect railway rescue cost and efficiency. Under the premise of the maximum satisfaction degree of quantity demanded at all emergency points, a multi-objective programming model is established by maximizing the satisfaction degree of dispatching time and the satisfaction degree of the couple number of relief point - emergency point. Combined with the ideal point method, a restrictive parameter interval method for optimal solution was designed, which can realize the quick seek of Pareto optimal solution. Furthermore, an example is given to verify the feasibility and effectiveness of the method.


Author(s):  
Fahimeh Zaeri ◽  
James Olabode Bamidele Rotimi

Bridge construction projects are associated with uncertainties partly due to sequencing issues, logistics, interactions, and resource constraints. Their construction is mostly cyclic and repetitive, yet complex, requiring innovative approaches to cope with its management. Construction projects planners seek methods to enable them to schedule bridge construction projects in consideration of these constraining factors. The main objective of this research is to develop a concept of a simulation-based modeling approach. It aimed to decide which data in real systems are important for the modeling of an operation, and in which way they must be gathered to help planners approach a proper simulation-based schedule. A case study project based in New Zealand was selected for this paper. It focuses on developing a resource-based model of bridge construction using a launching-girder construction method, taking into account the complex interactions among the project’s components. The discrete elements within the project and steps taken to develop a model are described in this paper. The study enhances knowledge on the applicability of simulation in repetitive construction operation, which in turn can provide more realistic models for scheduling progress.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Mansur Hamma-adama ◽  
◽  
Abdul-Basit Sa’eed Ahmad ◽  

Construction Industry is evolving amid the fourth industrial revolution. Transportation, commerce, manufacturing and many other industries ripened the current technological advancement and are striving to utilise every development in the IT sector. The procurement of construction works is known to be very conventional and backward in the adoption of digitalisation. The construction industry's procurement and supply chain are blamed for the most inflated cost of construction projects, mainly attributed to a lack of transparency and trust between the industry stakeholders. This research explores the challenges of E-procurement adoption in the industry and identifies the potential opportunities for its usage. This investigation's data are acquired through interviews, and the data are analysed using qualitative content analysis. This study reveals compounding challenges (i.e., corruption and lack of commitment) that lead to the failure of such efforts in Nigeria and the potential prospects (i.e., transparency and efficiency). This study is essential in developing a more effective and transparent process of procurement so that the Nigerian construction industry is not be left behind in the fast-digitalising markets.


Sign in / Sign up

Export Citation Format

Share Document