The temporal sequence of lymph flow in the right lymphatic duct in experimental chronic pulmonary edema

1966 ◽  
Vol 72 (2) ◽  
pp. 214-217 ◽  
Author(s):  
H.N. Uhley ◽  
S.E. Leeds ◽  
J.J. Sampson ◽  
N. Rudo ◽  
M. Friedman
2000 ◽  
Vol 88 (3) ◽  
pp. 888-893 ◽  
Author(s):  
Olga Efimova ◽  
A. B. Volokhov ◽  
Sakineh Iliaifar ◽  
C. A. Hales

Smoke inhalation can produce acute pulmonary edema. Previous studies have shown that the bronchial arteries are important in acute pulmonary edema occurring after inhalation of a synthetic smoke containing acrolein, a common smoke toxin. We hypothesized that inhalation of smoke from burning cotton, known to contain acrolein, would produce in sheep acute pulmonary edema that was mediated by the bronchial circulation. We reasoned that occluding the bronchial arteries would eliminate smoke-induced pulmonary edema, whereas occlusion of the pulmonary artery would not. Smoke inhalation increased lung lymph flow from baseline from 2.4 ± 0.7 to 5.6 ± 1.2 ml/0.5 h at 30 min ( P < 0.05) to 9.1 ± 1 ml/0.5 h at 4 h ( P < 0.05). Bronchial artery ligation diminished and delayed the rise in lymph flow with baseline at 2.8 ± 0.7 ml/0.5 h rising to 3.1 ± 0.8 ml/0.5 h at 30 min to 6.5 ± 1.5 ml/0.5 h at 240 min ( P < 0.05). Wet-to-dry ratio was 4.1 ± 0.2 in control, 5.1 ± 0.3 in smoke inhalation ( P< 0.05), and 4.4 ± 0.4 in bronchial artery ligation plus smoke-inhalation group. Smoke inhalation after occlusion of the right pulmonary artery resulted in a wet-to-dry ratio after 4 h in the right lung of 5.5 ± 0.8 ( P < 0.05 vs. control) and in the left nonoccluded lung of 5.01 ± 0.7 ( P < 0.05). Thus the bronchial arteries may be major contributors to acute pulmonary and airway edema following smoke inhalation because the edema occurs in the lung with the pulmonary artery occluded but not in the lungs with bronchial arteries ligated.


1996 ◽  
Vol 11 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Christopher E. Kapsner ◽  
David C. Seaberg ◽  
Charles Stengel ◽  
Kaveh Ilkhanipour ◽  
James Menegazzi

AbstractIntroduction:The esophageal detector device (EDD) recently has been found to assess endotracheal (ET) tube placement accurately. This study describes the reliability of the EDD in determining the position of the ET tube in clinical airway situations that are difficult.Methods:This was a prospective, randomized, single-blinded, controlled laboratory investigation. Two airway managers (an emergency-medicine attending physician and a resident) determined ET-tube placement using the EDD in five swine in respiratory arrest. The ET tube was placed in the following clinical airway situations: 1) esophagus; 2) esophagus with 1 liter of air instilled; 3) trachea; 4) trachea with 5 ml/kg water instilled; and 5) right mainstem bronchus. Anatomic location of the tube was verified by thoracotomy of the left side of the chest.Results:There was 100% correlation between the resident and attending physician's use of the EDD. The EDD was 100% accurate in determining tube placement in the esophagus, in the esophagus with 1 liter of air instilled, in the trachea, and in the right mainstem bronchus. The airway managers were only 80% accurate in detecting tracheal intubations when fluid was present.Conclusions:The EDD is an accurate and reliable device for detecting ET-tube placement in most clinical situations. Tube placement in fluid-filled trachea, lungs, or both, which occurs in pulmonary edema and drowning, may not be detected using this device.


1985 ◽  
Vol 58 (4) ◽  
pp. 1092-1098 ◽  
Author(s):  
M. D. Walkenstein ◽  
B. T. Peterson ◽  
J. E. Gerber ◽  
R. W. Hyde

Histological studies provide evidence that the bronchial veins are a site of leakage in histamine-induced pulmonary edema, but the physiological importance of this finding is not known. To determine if a lung perfused by only the bronchial arteries could develop pulmonary edema, we infused histamine for 2 h in anesthetized sheep with no pulmonary arterial blood flow to the right lung. In control sheep the postmortem extravascular lung water volume (EVLW) in both the right (occluded) and left (perfused) lung was 3.7 +/- 0.4 ml X g dry lung wt-1. Following histamine infusion, EVLW increased to 4.4 +/- 0.7 ml X g dry lung wt-1 in the right (occluded) lung (P less than 0.01) and to 5.3 +/- 1.0 ml X g dry wt-1 in the left (perfused) lung (P less than 0.01). Biopsies from the right (occluded) lungs scored for the presence of edema showed a significantly higher score in the lungs that received histamine (P less than 0.02). Some leakage from the pulmonary circulation of the right lung, perfused via anastomoses from the bronchial circulation, cannot be excluded but should be modest considering the low pressures in the pulmonary circulation following occlusion of the right pulmonary artery. These data show that perfusion via the pulmonary arteries is not a requirement for the production of histamine-induced pulmonary edema.


1992 ◽  
Vol 73 (3) ◽  
pp. 1040-1046 ◽  
Author(s):  
G. M. Barnas ◽  
D. Stamenovic ◽  
K. R. Lutchen

We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50–300 ml, 0.2–2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.


1995 ◽  
Vol 78 (1) ◽  
pp. 64-69 ◽  
Author(s):  
C. A. Hales ◽  
S. Musto ◽  
W. G. Hutchison ◽  
E. Mahoney

Pulmonary edema following smoke inhalation is due to the chemical toxins in smoke and not to the heat. We have shown that acrolein, a common component of smoke, induces pulmonary edema, perhaps via release of leukotrienes. We, therefore, hypothesized that acrolein, a component of smoke from burning cotton, might have a major role in producing pulmonary edema in sheep after cotton smoke inhalation and that BW-755C, a combined cyclo- and lipoxygenase inhibitor, would prevent the edema, whereas indomethacin, a cyclooxygenase inhibitor, would not. In control anesthetized sheep (n = 7), 128 breaths of cotton smoke induced no change in pulmonary arterial pressure but induced increases (P < 0.05) in pulmonary lymph flow from 4.4 +/- 0.8 (SE) to 15 +/- 2.7 ml/h, lymph protein flux from 0.25 +/- 0.08 to 0.80 +/- 0.16 g/h, and blood-corrected wet-to-dry weight ratios from a normal value of 3.8 +/– 0.07 (n = 9) to 4.5 +/- 0.18. Indomethacin (n = 6) did not significantly prevent these changes, whereas BW-755C decreased lung lymph flow change from 5 +/- 1 to 7 +/- 2 ml/h (P = NS), lymph protein flux from 0.25 +/- 0.08 to 0.35 +/- 0.1 g/h (P = NS), and weight-to-dry ratio from normal to 3.9 +/- 2.1 (P = NS). These data suggest leukotrienes may have a role in producing cotton smoke-induced noncardiogenic pulmonary edema.


1994 ◽  
Vol 77 (1) ◽  
pp. 184-189 ◽  
Author(s):  
M. Fukue ◽  
V. B. Serikov ◽  
E. H. Jerome

Two routes by which interstitial pulmonary edema liquid may leave the lung during recovery are reabsorption into the pulmonary circulation and clearance by lung lymphatics. We hypothesized that reabsorption of edema liquid of low protein concentration into the pulmonary circulation would be greater than reabsorption of edema liquid of high protein concentration because of the greater protein osmotic gradient in the former. On the basis of previous studies, lymph flow should contribute minimally to the recovery. In 22 in situ perfused sheep lungs with lymph fistulas, we produced approximately 100 g of osmotic or hydrostatic edema (low protein) or increased leakiness edema by calcium depletion (high protein). To induce reabsorption, we changed the perfusate from low- (1% albumin, osmotic pressure = 4 cmH2O) to high-protein (7% albumin, osmotic pressure = 22 cmH2O) solution in the osmotic group, decreased capillary pressure from 29 +/- 9 to 11 +/- 6 cmH2O in the hydrostatic group, or reversed leakiness by adding CaCl2 to the perfusate in the increased leakiness group. Reabsorption occurred only during recovery from osmotic (40 +/- 22% of filtered liquid) and hydrostatic (15 +/- 11%) edema. Total lung lymph flow during recovery from osmotic, hydrostatic, or increased leakiness edema was 4.9 +/- 3.4, 4.3 +/- 3.4, or 3.5 +/- 1.9 g, respectively. We conclude that during recovery from pulmonary edema interstitial liquid is reabsorbed into the circulation in inverse proportion to its protein concentration. We confirm that only a small fraction of the interstitial edema liquid is cleared by the lymphatics during recovery from any type of edema.


1995 ◽  
Vol 269 (4) ◽  
pp. R943-R947
Author(s):  
Y. Kikuchi ◽  
H. Nakazawa ◽  
D. L. Traber

We developed a chronic lung fistula that drains only the left lung, allowing for evaluation of injury in a single lung. To remove lymph drainage from the right lung into the caudal mediastinal lymph node, the right lower pulmonary ligament was severed. Pneumatic occluders were placed on the left pulmonary arteries and veins. To ensure that lymph drained from only the left lung, we increased the right pulmonary arterial pressure (RPAP) from 21.2 +/- 0.5 to 36.5 +/- 0.6 mmHg. The left pulmonary arterial pressure (LPAP) was kept at wedge pressure level for 1 h by inflating pneumatic occluders. Lymph flow from the left lung fistula was stable during this occlusion. Six hours after recovery was increased the LPAP from a baseline level of 19.1 +/- 1.0 to 36.4 +/- 0.9 mmHg and the RPAP from 21.2 +/- 0.5 to 38.0 +/- 0.8 mmHg for 2 h by inflating the pneumatic occluders on the left and right pulmonary veins. Lymph flow increased from 5.3 +/- 1.0 to 28.0 +/- 2.9 ml/h. Reflection coefficient was calculated at 0.80 +/- 0.02.


1994 ◽  
Vol 77 (2) ◽  
pp. 888-895 ◽  
Author(s):  
S. P. Janssens ◽  
S. W. Musto ◽  
W. G. Hutchison ◽  
C. Spence ◽  
M. Witten ◽  
...  

Inhalation of smoke containing acrolein, the most common toxin in urban fires after carbon monoxide, causes vascular injury with non-cardiogenic pulmonary edema containing potentially edematogenic eicosanoids such as thromboxane (Tx) B2, leukotriene (LT) B4, and the sulfidopeptide LTs (LTC4, LTD4, and LTE4). To determine which eicosanoids are important in the acute lung injury, we pretreated sheep with BW-755C (a combined cyclooxygenase and lipoxygenase inhibitor), U-63557A (a specific Tx synthetase inhibitor), or indomethacin (a cyclooxygenase inhibitor) before a 10-min exposure to a synthetic smoke containing carbon particles (4 microns) with acrolein and compared the results with those from control sheep that received only carbon smoke. Acrolein smoke induced a fall in arterial PO2 and rises in peak inspiratory pressure, main pulmonary arterial pressure, pulmonary vascular resistance, lung lymph flow, and the blood-free wet-to-dry weight ratio. BW-755C delayed the rise in peak inspiratory pressure and prevented the fall in arterial PO2, the rise in lymph flow, and the rise in wet-to-dry weight ratio. Neither indomethacin nor U-63557A prevented the increase in lymph flow or wet-to-dry weight ratio, although they did blunt and delay the rise in airway pressure and did prevent the rises in pulmonary arterial pressure and pulmonary vascular resistance. Thus, cyclooxygenase products, probably Tx, are responsible for the pulmonary hypertension after acrolein smoke and to some extent for the increased airway resistance but not the pulmonary edema. Prevention of high-permeability pulmonary edema after smoke with BW-755C suggests that LTB4, may be etiologic, as previous work has eliminated LTC4, LTD4, and LTE4.


1983 ◽  
Vol 55 (3) ◽  
pp. 983-989 ◽  
Author(s):  
F. L. Minnear ◽  
P. S. Barie ◽  
A. B. Malik

The effects of a transient increase in pulmonary microvascular pressure (Pmv) on pulmonary fluid and protein exchange were studied in anesthetized sheep in which pulmonary lymph was collected. Pmv was increased to 30-40 mmHg for 15-30 min in 18 sheep by either an intra-aortic injection of norepinephrine (NE) or a rapid inflation of a left atrial balloon. NE injection produced sustained two- to threefold increases in pulmonary lymph flow and protein flux, whereas rapid balloon inflation transiently elevated lymph flow even though Pmv increased to similar levels with both methods. The sustained increases with NE were not due to an increase in vascular permeability but probably the result of a persistent increase in vascular surface area. In three additional animals, Pmv was increased to over 50 mmHg for 15-30 min. In these animals, lymph flow increased only by 49%, but airway edema fluid was present. The ratio of extravascular lung water to bloodless dry lung weight was 5.77 +/- 0.13 as compared with 4.30 +/- 0.11 in sheep subjected to Pmv less than 50 mmHg and to 4.08 +/- 0.19 for controls. These findings indicate that high pressure-induced pulmonary edema depends on a threshold Pmv around 50 mmHg. A combination of high capillary pressure and impaired lymphatic flow may be the bases for the development of neurogenic and catecholamine-induced pulmonary edema.


2016 ◽  
Vol 25 (2) ◽  
pp. 137-139
Author(s):  
Jaffar S Shehatha ◽  
Abdulsalam Y Taha

A 66-year-old Australian man underwent elective replacement of a severely stenotic aortic valve with a 22-mm Medtronic-Hall valve. Six weeks later, he was readmitted with worsening dyspnea, fever, and mild anemia. Investigations confirmed pulmonary edema and moderate periprosthetic aortic regurgitation. The pulmonary edema was managed conservatively, and a second 22-mm Medtronic-Hall valve was implanted. Infective endocarditis was suspected in the aortic annulus below the orifice of the right coronary artery. A bacteriological study revealed a rare bacteria of Streptomyces species. The patient received intensive antibiotic therapy over a 6-week period of hospitalization, and the aortic regurgitation disappeared one week postoperatively.


Sign in / Sign up

Export Citation Format

Share Document