scholarly journals The bound states of weakly coupled long-range one-dimensional quantum hamiltonians

1977 ◽  
Vol 107 (1-2) ◽  
pp. 431
1977 ◽  
Vol 108 (1) ◽  
pp. 69-78 ◽  
Author(s):  
R Blankenbecler ◽  
M.L Goldberger ◽  
B Simon

2020 ◽  
Vol 22 (9) ◽  
pp. 093052
Author(s):  
Wenjie Liu ◽  
Yongguan Ke ◽  
Bo Zhu ◽  
Chaohong Lee

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
T. Miyamoto ◽  
T. Kakizaki ◽  
T. Terashige ◽  
D. Hata ◽  
H. Yamakawa ◽  
...  

Abstract Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wave functions are more delocalized than in the ground state, and long-range Coulomb interactions play important roles in charge dynamics. However, their effects are difficult to discriminate experimentally. Here, we show that in a one-dimensional Mott insulator, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ), long-range Coulomb interactions stabilize not only excitons, doublon-holon bound states, but also biexcitons. By measuring terahertz-electric-field-induced reflectivity changes, we demonstrate that odd- and even-parity excitons are split off from a doublon-holon continuum. Further, spectral changes of reflectivity induced by a resonant excitation of the odd-parity exciton reveals that an exciton-biexciton transition appears just below the exciton-transition peak. Theoretical simulations show that long-range Coulomb interactions over four sites are necessary to stabilize the biexciton. Such information is indispensable for understanding the non-equilibrium dynamics of photoexcited Mott insulators.


2010 ◽  
Vol 20 (01) ◽  
pp. 185-194 ◽  
Author(s):  
MANUEL G. VELARDE ◽  
ALEXANDER P. CHETVERIKOV ◽  
WERNER EBELING ◽  
DIRK HENNIG ◽  
JOHN J. KOZAK

We discuss here possible models for long-range electron transfer (ET) between a donor (D) and an acceptor (A) along an anharmonic (Morse–Toda) one-dimensional (1d)-lattice. First, it is shown that the electron may form bound states (solectrons) with externally, mechanically excited solitons in the lattice thus leading to one form of soliton-mediated transport. These solectrons generally move with supersonic velocity. Then, in a thermally excited lattice, it is shown that solitons can also trap electrons, forming similar solectron bound states; here, we find that ET based on hopping can be modeled as a diffusion-like process involving not just one but several solitons. It is shown that either of these two soliton-assisted modes of transport can facilitate ET over quite long distances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. S. Kozlyakova ◽  
A. V. Moskin ◽  
P. S. Berdonosov ◽  
V. V. Gapontsev ◽  
S. V. Streltsov ◽  
...  

AbstractUniform quasi-one-dimensional integer spin compounds are of interest as a potential realization of the Haldane conjecture of a gapped spin liquid. This phase, however, has to compete with magnetic anisotropy and long-range ordered phases, the implementation of which depends on the ratio of interchain J′ and intrachain J exchange interactions and both uniaxial D and rhombic E single-ion anisotropies. Strontium nickel selenite chloride, Sr2Ni(SeO3)2Cl2, is a spin-1 chain system which passes through a correlations regime at Tmax ~ 12 K to long-range order at TN = 6 K. Under external magnetic field it experiences the sequence of spin-flop at Bc1 = 9.0 T and spin-flip transitions Bc2 = 23.7 T prior to full saturation at Bsat = 31.0 T. Density functional theory provides values of the main exchange interactions and uniaxial anisotropy which corroborate the experimental findings. The values of J′/J = 0.083 and D/J = 0.357 place this compound into a hitherto unoccupied sector of the Sakai-Takahashi phase diagram.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Dmitry Melnikov ◽  
Horatiu Nastase

Abstract In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of Sl(2, ℤ) on this transport, for theories with an AdS/CMT dual. We find that Sl(2, ℤ) restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is $$ \overline{L}=\overline{\kappa}/\left( T\sigma \right)={cg}_4^2\uppi /3 $$ L ¯ = κ ¯ / Tσ = cg 4 2 π / 3 , from the weakly coupled gravity dual. In a self-dual theory this value is also the value of L = κ/(Tσ) in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized SY Kq models and the AdS4 gravity dual, we calculate the transport coefficients and show how they can be matched at large q. We construct a generalization of this effective action that is invariant under Sl(2, ℤ) and can describe vortex conduction and integer quantum Hall effect.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


Sign in / Sign up

Export Citation Format

Share Document