The activation of intestinal brush border sucrase by alkali metal ions: An allosteric mechanism similar to that for the Na+-activation of nonelectrolyte transport systems in intestine

1975 ◽  
Vol 168 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Akhtar Mahmood ◽  
Francisco Alvarado
1992 ◽  
Vol 288 (1) ◽  
pp. 47-53 ◽  
Author(s):  
S R Alonso-Torre ◽  
M A Serrano ◽  
J M Medina ◽  
F Alvarado

The placental uptake of L-alanine was studied by using purified brush-border membrane vesicles from rat trophoblasts. Saturation curves were carried out at 37 degrees C in buffers containing 100 mM (zero-trans)-NaSCN, -NaCl, -KSCN, -KCl, or -N-methyl-D-glucamine gluconate. The uncorrected uptake results were fitted by non-linear regression analysis to an equation involving one diffusional component either one or two saturable Michaelian transport terms. In the presence of NaCl, two distinct L-alanine transport systems were distinguished, named respectively System 1 (S-1; Vm1 about 760 pmol/s per mg of protein; KT1 = 0.5 mM) and System 2 (S-2; Vm2 about 1700 pmol/s per mg; KT2 = 9 mM). In contrast, in the presence of K+ (KCl = KSCN) or in the absence of any alkali-metal ions (N-methyl-D-glucamine gluconate), only one saturable system was apparent, which we identify as S-2. When Na+ is present, S-1, but not S-2, appears to be rheogenic, since its maximal transport capacity significantly increases in the presence of an inside-negative membrane potential, created either by replacing Cl- with the permeant anion thiocyanate (NaSCN > NaCl) or by applying an appropriate K+ gradient and valinomycin. alpha-(Methylamino)isobutyrate (methyl-AIB) appears to be a substrate of S-1, but not of S-2. For reasons that remain to be explained, however, methyl-AIB inhibits S-2. We conclude that S-1 represents a truly Na(+)-dependent mechanism, where Na+ behaves as an obligatory activator, whereas S-2 cannot discriminate between Na+ and K+, although its activity is higher in the presence of alkali-metal ions than in their absence (Na+ = K+ > N-methyl-D-glucammonium ion). S-2 appears to be fully developed 2 days before birth, whereas S-1 undergoes a capacity-type activation between days 19.5 and 21.5 of gestation, i.e. its apparent Vmax. nearly doubles, whereas its KT remains constant.


1988 ◽  
Vol 251 (3) ◽  
pp. 667-675 ◽  
Author(s):  
M Vasseur ◽  
G Van Melle ◽  
R Frangne ◽  
F Alvarado

For rabbit intestinal brush-border sucrase, a model based on classical Michaelis-Dixon theory cannot fully explain the peculiar antagonistic relationship existing between the substrate and one key proton, Hx, which at acid pH values behaves as a fully competitive inhibitor. In the same pH range, a second proton, Hy, is responsible for changes in catalytic activity and behaves as a mixed-type partially non-competitive inhibitor [Vasseur, Tellier & Alvarado (1982) Arch. Biochem. Biophys. 218, 263-274]. Although involved in the same ionization reaction, these two protons have different kinetic functions, since they are responsible for affinity-type and capacity-type effects respectively. Depending on whether Hx is bound or not, we postulate the enzyme to alternate between two distinct forms differing in their binding properties. The alkali-metal ions Na+ and Li+ have a concentration-dependent biphasic effect on this equilibrium. At low concentrations they facilitate the release of Hx, resulting in K-type activation. At higher concentrations they favour enzyme reprotonation, causing K-type inhibition. On the basic side of the pH spectrum, our results confirm the existence of separate non-competitive effects of the alkali-metal ions, particularly Li+ [Alvarado & Mahmood (1979) J. Biol. Chem. 254, 9534-9541]. To explain the molecular mechanisms underlying the alkali-metal-ion- and H+-dependent effects, we formulate a sucrase model, the three-protons model, in which the acid and basic ionization constants involve respectively two and one key prototropic groups that are functionally distinguishable. A global iterative fit of the relevant general equation to our whole set of data has permitted us to estimate the numerical value of each of the constants constituting the model.


1981 ◽  
Vol 59 (12) ◽  
pp. 1734-1744 ◽  
Author(s):  
Thomas M. Fyles ◽  
Virginia A. Malik-Diemer ◽  
Dennis M. Whitfield

An artificial membrane system based on a series of macrocyclic polyether carriers (crown ethers) is described. Under the influence of a proton gradient the carriers move alkali metal ions from basic to acidic solution through a chloroform membrane phase. Transport occurs against the concentration gradient of the transported ion as a result of a coupled counterflow of protons. Different transport behaviors are observed depending upon the metal ion concentration. At high metal ion concentration the amount transported is a linear function of time; at lower metal ion concentration the amount transported is a complex function of time which may be described as the result of a pair of consecutive first order processes. Effects of metal ion, carrier, and proton concentration on transport rate are considered. The rate increases with increasing metal ion or carrier concentration but is essentially independent of the pH of either aqueous phase. Increased lipophilicity of the carrier also results in a rate increase. Carriers derived from 18-crown-6 transport potassium selectively and all ions more rapidly than 15-crown-5 derivatives which are, however, selective for sodium. The overall efficiency of the system is discussed in terms of competing "leak" reactions, either of cations from the basic phase or of anions from the acidic phase.


2019 ◽  
Vol 21 (2) ◽  
pp. 561-571 ◽  
Author(s):  
Shun-ichi Ishiuchi ◽  
Yuta Sasaki ◽  
James M. Lisy ◽  
Masaaki Fujii

Differentiating K+ and Na+ binding patterns in peptide sequences.


Sign in / Sign up

Export Citation Format

Share Document