Modification of (Na+ + K+)-dependent ATPase by fluorescein isothiocyanate: Evidence for the involvement of different amino groups at different pH values

1981 ◽  
Vol 211 (2) ◽  
pp. 652-661 ◽  
Author(s):  
Parimal C. Sen ◽  
James G. Kapakos ◽  
Marcia Steinberg
1982 ◽  
Vol 56 (1) ◽  
pp. 157-175
Author(s):  
S. Margel ◽  
U. Beitler ◽  
M. Ofarim

Polyacrolein (PA) microspheres in sizes ranging from 0.04 micron to 40 microns were synthesized. Magnetic and fluorescent PA microspheres were formed by carrying out the polymerization process in the presence of appropriate ferrofluidic or fluorochromic compounds, respectively. The microspheres carry reactive aldehyde groups, through which various ligands, containing primary amino groups, were covalently bound at physiological pH values. The potential use of these microspheres was demonstrated by the specific labelling of fresh human red blood cells (RBC) and by the separation of human RBC from turkey RBC by means of a magnetic field. PA microspheres were also bound covalently to the anti-allergic drug disodium chromoglycate (DSCG) and the conjugate was used for the labelling of rat basophilic leukaemia cells.


1985 ◽  
Vol 40 (11-12) ◽  
pp. 863-875 ◽  
Author(s):  
Gertrude Swoboda ◽  
Wilhelm Hasselbach

Abstract Several model compounds containing thiol and/or amino groups (mercaptoethanol, glutathione, cysteine, ethanolamine, glycine) were studied with respect to their reactivity towards fluorescein isothiocyanate (followed spectrophotometrically at 504 and 412 nm), stability of product and long­ wave absorption maximum of the fluorescein residue attached. Thiol groups reacted by far more readily than amino groups. A specific effect was observed with cysteine, indicating an intramolecular transfer of the fluorescein residue from SH to NH2.With sarcoplasmic vesicles both types of reactions were observed. The ratio of products, which can be distinguished by their different stabilities and absorption spectra, depended on the absence or presence of detergents. While with native vesicles the NH2 reaction predominated, with vesicles solubilized with sodium dodecylsulfate, octaethyleneglycol mono-n-dodecyl ether or 1-0-tetradecyl-propanediol-(1,3)-3-phosphorylcholine the SH reaction became prevailing. Already 0.35 mg sodium dodecylsulfate per mg protein were sufficient to give rise to dithiourethane formation exclusively. Excess fluorescein isothiocyanate reacted with several thiol groups of dodecylsulfate-solubilized vesicles. In the presence of ATP binding of fluorescein isothiocyanate to native vesicles was significantly reduced.Total blockage of the vesicular SH groups with N-ethyl-maleimide led to preparations that reacted with fluorescein isothiocyanate much more slowly, compared to native vesicles. Octaethy­ leneglycol mono-n-dodecyl ether or 1-0-tetradecyl-propanediol-(1,3)-3-phosphorylcholine in the assay accelerated the thioureide formation from N-ethylmaleimide modified vesicles, whereas sodium dodecylsulfate prevented it almost completely.Our results support the suggestion that one or several thiol groups in vicinity of the highly reactive lysyl residue might play a role in the fast specific reaction, which is only observed with intact native vesicles.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3690
Author(s):  
Viktória Tóth ◽  
Péter Hermann ◽  
Dániel Végh ◽  
Tivadar Zelles ◽  
Zoltán Géczi

Poly(ethyleneimine) (PEI) is a weakly basic, synthetic, polycationic polymer, due to the presence of primary, secondary, and tertiary amino groups. The amino groups are responsible for the variety of applications of PEI (e.g., transfection, bioimaging, solar cell, etc.). Our study presents some new and reproducible methods for the quantification of molecular or mass concentration of highly branched PEI of different molecular weights (800–2000–25,000–750,000 MW PEI). In the course of the direct method, spectrophotometry and fluorometry were applied to determine the absorption and fluorescence of PEI dilution series. An increase in the MW at the same concentration produces a higher count number because of the higher number of amino groups in PEI molecules. The character of increment in fluorescence intensity is essentially different in the case of mass concentrations and molar concentrations. The increment of the fluorescence intensity related to the molar concentration is non-linear. In the case of mass concentration, the slope is linear. Moreover, their fluorescence is enhanced with the decrease in pH values. The spectrophotometry is a reliable method for measuring the quantity of PEI molecules in solution. Our data help in recognizing the detailed properties of PEI in dendrimer research.


1969 ◽  
Vol 61 (3) ◽  
pp. 561-576 ◽  
Author(s):  
K. Brunfeldt ◽  
B. A. Hansen ◽  
J. Hoiriis Nielsen

ABSTRACT Paper electrophoretic fractionation in barbiturate (barbital) buffer, pH 9, of iodine-substituted insulin 0–10.8 I/mole showed that substitution with 4–6 I/mole influences the binding of zinc to a demonstrable extent. The effect appears to be due to substitution in the imidazole groups of the histidine residues. Substitution with iodine in the tyrosine residues seems to be without significance, at least at the lower degrees of iodination. The importance of the histidine residues for the binding of zinc is shown by selective destruction of the imidazole groups by photo-oxidation, sensitized by methylene blue. Carbamylation of the N-terminal α-amino groups in the A- and B-chains with KOCN only slightly influences the ability to bind zinc while carbamylation with fluorescein isothiocyanate in the N-terminal of the B-chain brings about a more pronounced reduction in the zinc binding capacity.


1985 ◽  
Vol 52 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Harjinder Singh ◽  
Patrick F. Fox

SUMMARYThe increase produced by formaldehyde (HCHO) in the heat stability of milk did not occur when milk was treated with HCHO at temperatures up to 60°C followed by dialysis at 5°C. However, the minimum in the heat coagulation time (HCT)–pH curve was irreversibly removed if the milk was preheated at 80–C for 10 min in the presence of 5 mM-HCHO. Although this treatment blocked the ε-amino groups of lysyl residues, the stabilizing mechanism is considered to be due to the cross linking action of HCHO which reduced the level of non-sedimentable, κ-casein-rich protein dissociated from the micelles on heating. The specific crosslinking agent, dimethyl suberimidate, modified the HCT-pH profile of milk in a manner similar to preheating at 80°C for 10 min with 5 mM-HCHO, supporting the crosslinking hypothesis. The results of this study appear to lend some support to the proposal of Kudo (1980) that the minimum in the HCT-pH curve of milk is due to the dissociation of κ-casein from the micelles on heating at high temperatures at pH values greater than 6η7.


1953 ◽  
Vol 98 (6) ◽  
pp. 533-549 ◽  
Author(s):  
Herman N. Eisen ◽  
Sidney Belman

2,4-dinitrophenylsulfenyl chloride (DSCl) and 2,4-dinitrophenylthiocyanate (DSCN) elicited allergic reactions of the delayed type when applied to the skin of guinea pigs and of human beings who had been sensitized by prior exposure to 2,4-dinitrofluorobenzene (DF). DSCl and DSCN, together with 2,4-dinitrobenzene sulfonate (DSO3), constitute a clearly defined group of allergenic dinitrophenyl compounds in that they all combined with skin protein in vivo through reaction with cysteine or cystine. In vitro, these compounds combine with free SH groups, and with —S—S— groups of hair and epidermis, but not with —S—S— groups of oxidized glutathione or of bovine gamma globulins. DSO3, DSCl, and DSCN did not react with amino groups in vivo, but did react with protein amino groups in vitro at pH values of about 10. Another group of dinitrophenyl compounds (DF, DCl, and DBr) previously had been shown to combine with lysine ϵ-NH2 groups of epidermal proteins. In the present work it was found that these compounds do not react with the disulfide groups of these proteins, either in vivo or in vitro. Moreover, they did not seem to react with SH groups of viable skin, although they are highly reactive with sulfhydryl in vitro. This apparent discrepancy between reactivity with SH groups in vitro and in vivo may be due to the fact that the chromatographic technique employed was relatively insensitive for the sulfhydryl derivative. When a compound of either group was applied to the skin surface, dinitrophenyl-amino acids were recovered from the epidermis but not from the dermis. The results are discussed from the viewpoint of the epidermal localization of dinitrophenyl-protein conjugates.


1975 ◽  
Vol 28 (6) ◽  
pp. 433
Author(s):  
Theo AA Dopheide

Competitive labelling with [14C]acetic anhydride over a range of pH values has been used to explore the surface topography of the apovitellenin I moiety in emu egg yolk low-density lipoprotein. The reaction of the lysine e-amino groups with acetic anhydride has been related to pH in a set of titration curves; from these, the reactivities relative to alanine and the ionization constants of all but the amino terminallysines have been determined.


1971 ◽  
Vol 124 (2) ◽  
pp. 289-299 ◽  
Author(s):  
H. Kaplan ◽  
K. J. Stevenson ◽  
B. S. Hartley

1. A method is described for determining the ionization constants and reactivities of individual amino groups in proteins. The principle is that in the presence of a trace amount of radioactive label, the various reactive groups in a protein molecule will compete for the label and the amount incorporated into any one group will be determined by its nucleophilicity, pK and micro-environment. The relative amounts of label incorporated into various groups will be proportional to their second-order rate constants and by comparing these rate constants with those expected on the basis of a linear free-energy relationship obtained with a series of standard compounds, the micro-environment can be defined for a particular amino group. 2. The method consists of treating a protein and an internal standard with a limiting amount of radioactive reagent and then with an excess of unlabelled reagent to yield a chemically homogeneous but heterogeneously labelled compound. After appropriate enzymic digestion peptides containing each labelled group are isolated and their rates of reaction, relative to the internal standard, are determined from their specific radioactivities. The entire procedure is repeated at several pH values. 3. When the method was applied to the amino groups of porcine elastase by using tritiated acetic anhydride as the labelling reagent, the N-terminus was found to have pKa 9.7 and a much lower than normal reactivity. Lysine-87 and lysine-224 were found to have pKa 10.3 and normal reactivities. At pH values greater than 10.5 there are discontinuities in all the titration curves, indicating that the entire molecule is undergoing a structural reorganization.


1979 ◽  
Vol 57 (6) ◽  
pp. 489-496 ◽  
Author(s):  
Marla G. Sheffer ◽  
Harvey Kaplan

The chemical properties of the three amino groups of insulin were obtained at 10 and 37 °C using the competitive labelling technique with acetic anhydride as the labelling reagent. At 10 °C, pK values of 7.9, 7.2, and 7.8 were found for the glycyl A1, phenylalanyl B1, and lysyl B29 amino groups. When compared with standard amino compounds by means of a Brønsted plot, the two amino-termini were found to be 'super-reactive' and the lysyl ε-amino group buried. In the presence of carbon dioxide at physiological pH values, all three amino groups became much less reactive indicating that they had reacted to form carbamino derivatives. Above pH 8 the reactivities of the glycyl amino terminus and ε-amino group increase sharply indicating that insulin is undergoing a conformational change which is most likely a change in its association state. At 37 °C the amino groups do not titrate normally but exhibit sharp increases in reactivity over the physiological pH range with the midpoints in the pH reactivity profiles between pH values of 7.0 and 7.3. This behaviour is interpreted as a rapid disaggregation of insulin to form monomers as a result of the ionization of the amino groups. It is concluded that at physiological pH and temperature all three amino groups are deprotonated.


1987 ◽  
Vol 241 (1) ◽  
pp. 175-181 ◽  
Author(s):  
J Nandi ◽  
T K Ray

The effect of nolinium bromide [2-(3,4-dichlorophenylamino)quinolizium bromide], which acts as a K+ antagonist in the gastric H+ +K+-dependent ATPase reaction, was investigated at the level of 32P-labelled intermediates of the gastric ATPase reaction. A concentration-dependent effect of nolinium bromide was observed on the concentrations of phosphorylated intermediates. At low (up to 50 microM) concentrations the drug did not interfere with the concentrations of intermediates but exhibited a competition with K+ at the level of both 32P-labelled intermediates and hydrolysis of ATP at pH 7.0. Similar competition was noted in the H+ +K+-dependent ATPase reaction. Low nolinium bromide concentrations also drastically slowed the enzyme turnover. The concentrations of the intermediates were lowered appreciably between 50 microM- and 100 microM-nolinium bromide without affecting the ATP hydrolysis, and the effects were independent of pH. Similar to the effects at pH 7.0, the drug also exhibited competition with K+ in lowering the E approximately P concentration at pH 5.0. A dramatic effect of pH on the K+-sensitivity as well as on turnover of the 32P-labelled intermediates was observed. Although the concentrations of intermediates remained nearly unaltered at various pH values, the K+-stimulated hydrolysis of ATP showed an optimum at pH 7.0 with sharp declines at pH 5 and 8. The data suggest a critical involvement of H+ in the conversion of the K+-insensitive E1 approximately P into the K+-sensitive E2 approximately P form of the enzyme. Nolinium bromide appears to function as a K+ analogue and seems to block the entry of K+ at the K X E2 step, thereby interfering with the enzyme turnover.


Sign in / Sign up

Export Citation Format

Share Document