Cytochrome c dependent, antimycin-A resistant respiration in mitochondria from potato tuber (Solanum tuberosum L.) Influence of wounding and storage time on outer membrane nadh-cytochrome-c-reductase

1976 ◽  
Vol 430 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L.H.W. Van Der Plas ◽  
P.A. Jobse ◽  
J.D. Verleur
1967 ◽  
Vol 32 (2) ◽  
pp. 415-438 ◽  
Author(s):  
Gian Luigi Sottocasa ◽  
Bo Kuylenstierna ◽  
Lars Ernster ◽  
Anders Bergstrand

Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.


1978 ◽  
Vol 174 (1) ◽  
pp. 267-275 ◽  
Author(s):  
J Barrett ◽  
C N Hunter ◽  
O T G Jones

Differential centrifugation of suspensions of French-press-disrupted Rhodopseudomonas spheroides yielded a light particulate fraction that was different in many properties from the bulk membrane fraction. It was enriched in cytochrome c and had a low cytochrome b content. When prepared from photosynthetically grown cells this fraction had a very low specific bacteriochlorophyll content. The cytochrome c of the light particles differed in absorption maxima at 77K from cytochrome c2 attached to membranes; there was pronounced splitting of the alpha-band, as is found in cytochrome c2 free in solution. Potentiometric titration at A552–A540 showed the presence of two components that fitted an n = 1 titration; one component had a midpoint redox potential of +345mV, like cytochrome c2 in solution, and the second had E0′ at pH 7.0 of +110 mV, and they were present in a ratio of approx. 2:3. Difference spectroscopy at 77K showed that the spectra of the two components were very similar. More of a CO-binding component was present in particles from photosynthetically grown cells. Light membranes purified by centrifugation on gradients of 5–60% (w/w) sucrose retained the two c cytochromes; they contained no detectable succinate-cytochrome c reductase or bacteriochlorophyll and very little ubiquinone, but they contained NADH-cytochrome c reductase and some phosphate. Electrophoresis on sodium dodecyl sulphate/polyacrylamide gels showed that the light membranes of aerobically and photosynthetically grown cells were very similar and differed greatly from other membrane fractions of R. spheroides.


1981 ◽  
Vol 52 (1) ◽  
pp. 215-222
Author(s):  
M. Fujita ◽  
H. Ohta ◽  
T. Uezato

Endoplasmic reticulum membrane-rich fraction was obtained by subfractionation of the light microsomes from mouse jejunal mucosal epithelial cells. It was marked by high glucose-6-phosphatase, NADPH-cytochrome c reductase, and NADH-cytochrome c reductase activities and low Na+,K+-ATPase activity. The enrichment of Na+,K+-ATPase was 180-fold higher in the basolateral membranes than in the endoplasmic reticulum membrane-rich fraction relative to glucose-6-phosphatase. The protein peak that was phosphorylated in a Na-dependent manner was prominent in the basolateral membranes while it was a minor peak in the endoplasmic reticulum membrane-rich fraction. Under the electron microscope the fraction was seen to be composed of homogeneous small vesicles with thin smooth membranes.


1980 ◽  
Vol 18 (4) ◽  
pp. 389-393 ◽  
Author(s):  
Ian S. Small ◽  
John L. Wray

2009 ◽  
Vol XV (3) ◽  
pp. 251-258 ◽  
Author(s):  
R. Flores-López ◽  
◽  
F. Sánchez-del Castillo ◽  
J. E. Rodríguez-Pérez ◽  
M. T. Colinas-León ◽  
...  

1990 ◽  
Vol 49 (3) ◽  
pp. 206-214 ◽  
Author(s):  
GEORGE S. ZUBENKO ◽  
JOHN MOOSSY ◽  
DIANA CLAASSEN ◽  
A. Julio Martinez ◽  
GUTTI R. RAO

1990 ◽  
Vol 259 (6) ◽  
pp. C889-C896 ◽  
Author(s):  
R. M. McAllister ◽  
R. L. Terjung

Electron transport capacity of skeletal muscle was inhibited in situ in an acute dose-dependent manner with myxothiazol, a tight-binding inhibitor of ubiquinone-cytochrome c reductase, complex III of the respiratory chain. Peak oxygen consumption of rat hindlimb muscle was determined via consecutive 10-min isometric contraction (100 ms at 100 Hz) periods of increasing energy demands (4, 8, 15, 30, 45, and 60 tetani/min), using an isolated hindlimb preparation perfused with a high oxygen delivery (approximately 6-8 mumol.min-1.g-1). Peak oxygen consumption decreased from 4.61 +/- 0.19 mumol.min-1.g-1 (control) in a dose-dependent manner to 0.73 +/- 0.07 mumol.min-1.g-1 at 0.50 microM myxothiazol in blood. Oxygen extraction decreased from 65 to 12% of delivered oxygen. Furthermore, the reduction in peak respiratory rate became evident at lower energy demands of the contraction sequence. Myxothiazol inhibition of respiration was not dependent on the presence of muscle contractions but was evident when mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. A 50% effective dosage (ED50) of 0.21 microM myxothiazol for inhibition of peak oxygen consumption closely resembled the inhibition of NADH-cytochrome c reductase activity (ED50 of 0.27 microM) determined from homogenates of the same muscles. This suggests that the peak oxygen consumption of skeletal muscle is tightly coupled to the capacity for electron transport evaluated by flux through NADH-cytochrome c reductase. If the enzyme activity measured in vitro correctly represents available enzymatic capacity within contracting muscle, approximately 75% of electron transport capacity for handling reducing equivalents generated from NADH is utilized during peak oxygen consumption of rat hindlimb muscle contracting in situ.


Sign in / Sign up

Export Citation Format

Share Document