Endoplasmic reticulum membrane isolated from small-intestinal epithelial cells: enzyme and protein components

1981 ◽  
Vol 52 (1) ◽  
pp. 215-222
Author(s):  
M. Fujita ◽  
H. Ohta ◽  
T. Uezato

Endoplasmic reticulum membrane-rich fraction was obtained by subfractionation of the light microsomes from mouse jejunal mucosal epithelial cells. It was marked by high glucose-6-phosphatase, NADPH-cytochrome c reductase, and NADH-cytochrome c reductase activities and low Na+,K+-ATPase activity. The enrichment of Na+,K+-ATPase was 180-fold higher in the basolateral membranes than in the endoplasmic reticulum membrane-rich fraction relative to glucose-6-phosphatase. The protein peak that was phosphorylated in a Na-dependent manner was prominent in the basolateral membranes while it was a minor peak in the endoplasmic reticulum membrane-rich fraction. Under the electron microscope the fraction was seen to be composed of homogeneous small vesicles with thin smooth membranes.

1990 ◽  
Vol 259 (6) ◽  
pp. C889-C896 ◽  
Author(s):  
R. M. McAllister ◽  
R. L. Terjung

Electron transport capacity of skeletal muscle was inhibited in situ in an acute dose-dependent manner with myxothiazol, a tight-binding inhibitor of ubiquinone-cytochrome c reductase, complex III of the respiratory chain. Peak oxygen consumption of rat hindlimb muscle was determined via consecutive 10-min isometric contraction (100 ms at 100 Hz) periods of increasing energy demands (4, 8, 15, 30, 45, and 60 tetani/min), using an isolated hindlimb preparation perfused with a high oxygen delivery (approximately 6-8 mumol.min-1.g-1). Peak oxygen consumption decreased from 4.61 +/- 0.19 mumol.min-1.g-1 (control) in a dose-dependent manner to 0.73 +/- 0.07 mumol.min-1.g-1 at 0.50 microM myxothiazol in blood. Oxygen extraction decreased from 65 to 12% of delivered oxygen. Furthermore, the reduction in peak respiratory rate became evident at lower energy demands of the contraction sequence. Myxothiazol inhibition of respiration was not dependent on the presence of muscle contractions but was evident when mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. A 50% effective dosage (ED50) of 0.21 microM myxothiazol for inhibition of peak oxygen consumption closely resembled the inhibition of NADH-cytochrome c reductase activity (ED50 of 0.27 microM) determined from homogenates of the same muscles. This suggests that the peak oxygen consumption of skeletal muscle is tightly coupled to the capacity for electron transport evaluated by flux through NADH-cytochrome c reductase. If the enzyme activity measured in vitro correctly represents available enzymatic capacity within contracting muscle, approximately 75% of electron transport capacity for handling reducing equivalents generated from NADH is utilized during peak oxygen consumption of rat hindlimb muscle contracting in situ.


1979 ◽  
Vol 83 (1) ◽  
pp. 231-239 ◽  
Author(s):  
S R Slaughter ◽  
D E Hultquist

We have obtained and studied a 105,000-g pellet from T-3-Cl-2 cells, a cloned line of Friend virus-induced erythroleukemia cells. By difference spectrophotometry, the pellet was shown to contain cytochrome b5 and cytochrome P-450, hemeproteins that have been shown to participate in electron-transport reactions of endoplasmic reticulum and other membranous fractions of various tissues. The pellet also possesses NADH-cytochrome c reductase activity which is inhibited by anti-cytochrome b5 gamma-globulin, indicating the presence of cytochrome b5 reductase. This is the first demonstration of membrane-bound forms of these redox proteins in erythroid cells. Dimethyl sulfoxide-treated T-3-Cl-2 cells were also shown to possess membrane-bound cytochrome b5 and NADH-cytochrome c reductase activity. We failed to detect soluble cytochrome b5 in the 105,000-g supernatant fraction from homogenates of untreated or dimethyl sulfoxide-treated T-3-Cl-2 cells. In contrast, erythrocytes obtained from mouse blood were shown to possess soluble cytochrome b5 but no membrane-bound form of this protein. These findings are supportive of our hypothesis that soluble cytochrome b5 of erythrocytes is derived from endoplasmic reticulum or some other membrane structure of immature erythroid cells during cell maturation.


1988 ◽  
Vol 253 (1) ◽  
pp. 67-72 ◽  
Author(s):  
M E Dunlop ◽  
R G Larkins

Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], arising from hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], is proposed as the link between membrane-receptor activation and mobilization of Ca2+ from intracellular sites in hormone-secreting cells. The location of Ins(1,4,5)P3-sensitive membranes was investigated in cultured neonatal beta-cells. Membranes were obtained after lysis of cells attached to positively charged Sephadex. After lysis the presence of the enzyme markers 5′-nucleotidase, glucose-6-phosphatase, NADH-cytochrome c reductase, UDP-galactosyltransferase and succinate dehydrogenase indicated the mixed nature of the preparation. After sonication, however, UDP-galactosyltransferase and succinate dehydrogenase activities were undetectable, but 4.8% of total cellular glucose-6-phosphatase and 3.4% of total cellular NADH-cytochrome c reductase remained with 5′-nucleotidase in the preparation, indicating endoplasmic-reticulum association. ATP-dependent 45Ca2+ accumulation was shown in this preparation (410 +/- 24 pmol/mg of protein at 150 nM free Ca2+) and was inhibited by vanadate (100 microM). Ca2+ release was effected by Ins(1,4,5)P3, with half-maximal release at 0.5 +/- 0.14 microM-Ins(1,4,5)P3, t1/2 11.2 +/- 1.1 s. GTP- and guanosine 5′-[beta gamma-imido]triphosphate (p[NH]ppG)-promoted release of 45Ca2+ was demonstrated in this preparation, but the kinetics of release (half-maximal Ca2+ release at 5.4 +/- 0.7 microM, with t1/2 77.3 +/- 6.9 s, and at 51.1 +/- 4.2 microM, with t1/2 19.0 +/- 2.2 s, for GTP and p[NH]ppG respectively), and the ability of neomycin sulphate to block p[NH]ppG-induced release only, are indicative of separate release mechanisms after treatment with these agents. A close association between plasma membrane and elements of the endoplasmic reticulum is indicated in this model, providing a possible mechanism for local alterations in free Ca2+ in the sub-plasma-membrane region.


1972 ◽  
Vol 25 (1) ◽  
pp. 103 ◽  
Author(s):  
JM Rungie ◽  
JT Wiskich

Slicing turnip, swede, and beet storage tissues induced 20-100% loss of micro-somal NADH dehydrogenase activities within 10 min. Subsequent washing of the slices resulted in partial recovery of some activities particularly NADH-cytochrome c reductase which reached a maximum after 24 hr aging then again declined. Slicing also induced a 20% decrease in microsomal protein but this loss was recovered after 5-10 hr aging. These induced changes correlated with reported changes in the ultra-structure of the endoplasmic reticulum.


1973 ◽  
Vol 57 (3) ◽  
pp. 659-667 ◽  
Author(s):  
J. M. Lord ◽  
T. Kagawa ◽  
T. S. Moore ◽  
H. Beevers

The properties of a discrete membranous fraction isolated on sucrose gradients from castor bean endosperm have been examined. This fraction was previously shown to be the exclusive site of phosphorylcholine-glyceride transferase. The distribution of NADPH-cytochrome c reductase and antimycin insensitive NADH-cytochrome c reductase across the gradient followed closely that of the phosphorylcholine-glyceride transferase. This fraction also had NADH diaphorase activity and contained cytochromes b5 and P 450. On sucrose gradients containing 1 mM EDTA this fraction had a mean isopycnic density of 1.12 g/cm3 and sedimented separately from the ribosomes; electron micrographs showed that it was comprised of smooth membranes. When magnesium was included in the gradients to prevent the dissociation of membrane-bound ribosomes, the isopycnic density of the membrane fraction with its associated enzymes was increased to 1.16 g/cm3 and under these conditions the electron micrographs showed that the membranes had the typical appearance of rough endoplasmic reticulum. Together these data show that the endoplasmic reticulum is the exclusive site of lecithin formation in the castor bean endosperm and establish a central role for this cytoplasmic component in the biogenesis of cell membranes.


1978 ◽  
Vol 174 (1) ◽  
pp. 267-275 ◽  
Author(s):  
J Barrett ◽  
C N Hunter ◽  
O T G Jones

Differential centrifugation of suspensions of French-press-disrupted Rhodopseudomonas spheroides yielded a light particulate fraction that was different in many properties from the bulk membrane fraction. It was enriched in cytochrome c and had a low cytochrome b content. When prepared from photosynthetically grown cells this fraction had a very low specific bacteriochlorophyll content. The cytochrome c of the light particles differed in absorption maxima at 77K from cytochrome c2 attached to membranes; there was pronounced splitting of the alpha-band, as is found in cytochrome c2 free in solution. Potentiometric titration at A552–A540 showed the presence of two components that fitted an n = 1 titration; one component had a midpoint redox potential of +345mV, like cytochrome c2 in solution, and the second had E0′ at pH 7.0 of +110 mV, and they were present in a ratio of approx. 2:3. Difference spectroscopy at 77K showed that the spectra of the two components were very similar. More of a CO-binding component was present in particles from photosynthetically grown cells. Light membranes purified by centrifugation on gradients of 5–60% (w/w) sucrose retained the two c cytochromes; they contained no detectable succinate-cytochrome c reductase or bacteriochlorophyll and very little ubiquinone, but they contained NADH-cytochrome c reductase and some phosphate. Electrophoresis on sodium dodecyl sulphate/polyacrylamide gels showed that the light membranes of aerobically and photosynthetically grown cells were very similar and differed greatly from other membrane fractions of R. spheroides.


Sign in / Sign up

Export Citation Format

Share Document