Fast translocation of phosphatidylcholine to the outer membrane leaflet after its synthesis at the inner membrane surface in human erythrocytes

1991 ◽  
Vol 1064 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Corinna Andrick ◽  
Karin Bröring ◽  
Bernhard Deuticke ◽  
Cees W.M. Haest
2002 ◽  
Vol 70 (7) ◽  
pp. 3744-3751 ◽  
Author(s):  
Dawn M. Shell ◽  
Lisa Chiles ◽  
Ralph C. Judd ◽  
Samar Seal ◽  
Richard F. Rest

ABSTRACT Neisseria gonorrhoeae and Neisseria meningitidis express an ∼43-kDa α-2,3-sialyltransferase (Lst) that sialylates the surface lipooligosaccharide (LOS) by using exogenous (in all N. gonorrhoeae strains and some N. meningitidis serogroups) or endogenous (in other N. meningitidis serogroups) sources of 5′-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA). Sialylation of LOS can protect N. gonorrhoeae and N. meningitidis from complement-mediated serum killing and from phagocytic killing by neutrophils. The precise subcellular location of Lst has not been determined. We confirm and extend previous studies by demonstrating that Lst is located in the outer membrane and is surface exposed in both N. gonorrhoeae and N. meningitidis. Western immunoblot analysis of subcellular fractions of N. gonorrhoeae strain F62 and N. meningitidis strain MC58⊄3 (an acapsulate serogroup B strain) performed with rabbit antiserum raised against recombinant Lst revealed an ∼43-kDa protein exclusively in outer membrane preparations of both pathogens. Inner membrane, periplasmic, cytoplasmic, and culture supernatant fractions were devoid of Lst, as determined by Western blot analysis. Consistent with this finding, outer membrane fractions of N. gonorrhoeae were significantly enriched for sialyltransferase enzymatic activity. A trace of enzymatic activity was detected in inner membrane fractions, which may have represented Lst in transit to the outer membrane or may have represented inner membrane contamination of outer membrane preparations. Subcellular preparations of an isogenic lst insertion knockout mutant of N. gonorrhoeae F62 (strain ST01) expressed neither a 43-kDa immunoreactive protein nor sialyltransferase activity. Anti-Lst rabbit antiserum bound to whole cells of N. meningitidis MC58⊄3 and wild-type N. gonorrhoeae F62 but not to the Lst mutant ST01, indicating the surface exposure of the enzyme. Although the anti-Lst antiserum avidly bound enzymatically active, recombinant Lst, it inhibited Lst (sialyltransferase) activity by only about 50% at the highest concentration of antibody used. On the contrary, anti-Lst antiserum did not inhibit sialylation of whole N. gonorrhoeae cells in the presence of exogenous CMP-NANA, suggesting that the antibody did not bind to or could not access the enzyme active site on the surface of viable Neisseria cells. Taken together, these results indicate that Lst is an outer membrane, surface-exposed glycosyltransferase. To our knowledge, this is the first demonstration of the localization of a bacterial glycosyltransferase to the outer membrane of gram-negative bacteria.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22677-22682
Author(s):  
Maria Lyngby Karlsen ◽  
Dennis S. Bruhn ◽  
Weria Pezeshkian ◽  
Himanshu Khandelia

Long acyl chain sphingomyelin and saturated phospholipid tails in the outer membrane leaflet deplete cholesterol from the inner leaflet in mammalian membranes.


1976 ◽  
Vol 22 (9) ◽  
pp. 1233-1244 ◽  
Author(s):  
T. J. Beveridge ◽  
R. G. E. Murray

Chelating agents disrupted the superficial layers on Spirillum putridiconchylium and adsorption of cationized ferritin indicated that both upper and lower surfaces of superficial layer fragments, as well as the outer membrane surface, possessed areas which were negatively charged. Growth of the bacterium in 1% casamino acids (vitamin free) resulted in cells which were devoid of the superficial layers, and negative staining of these cells revealed an amorphous precipitate together with a vesicular outer membrane component extruding from their surfaces into the medium. Addition of either 1 mM Ca2+ or 1 mM Sr2+ to the growth medium produced the typical regularly structured cell surface, whereas addition of equal concentrations of Li+, Na+, K+, Mg2+, Ba2+, Mn2+, Fe3+, or three polyamines produced the structureless surface.


1976 ◽  
Vol 22 (2) ◽  
pp. 427-434
Author(s):  
F. Mazet ◽  
J. Cartaud

The freeze-fracturing technique was used to characterize the junctional devices involved in the electrical coupling of frog atrial fibres. These fibres are connected by a type of junction which can be interpreted as a morphological variant of the “gap junction” or “nexus”. The most characteristic features are rows of 9-nm junctional particles forming single or anastomosed circular profiles on the inner membrane face, and corresponding pits on the outer membrane face. Very seldom aggregates consisting of few geometrically disposed 9-nm particles are found. The significance of the junctional structures in the atrial fibres is discussed, with respect to present knowledge about junctional features of gap junctions in various tissues, including embryonic ones.


2015 ◽  
Vol 112 (17) ◽  
pp. 5497-5502 ◽  
Author(s):  
Manoj Rajaure ◽  
Joel Berry ◽  
Rohit Kongari ◽  
Jesse Cahill ◽  
Ry Young

In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.


Sign in / Sign up

Export Citation Format

Share Document