Activities of enzymes of phospholipid and fatty acid synthesis in fetal and adult rat type II pneumocytes

Author(s):  
Mitchell J. Kresch ◽  
Douglas A. Smart ◽  
Christine M. Wilson ◽  
Ian Gross ◽  
Seamus A. Rooney
2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Karine Gloux ◽  
Mélanie Guillemet ◽  
Charles Soler ◽  
Claire Morvan ◽  
David Halpern ◽  
...  

ABSTRACT The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants.


2006 ◽  
Vol 282 (7) ◽  
pp. 4427-4436 ◽  
Author(s):  
Jennifer L. Stephens ◽  
Soo Hee Lee ◽  
Kimberly S. Paul ◽  
Paul T. Englund

Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and β-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [14C]pyruvate or [14C]threonine, either of which is catabolized to [14C]acetyl-CoA in the mitochondrion. Although some of the [14C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.


2002 ◽  
Vol 30 (6) ◽  
pp. 1050-1055 ◽  
Author(s):  
H. Marrakchi ◽  
Y.-M. Zhang ◽  
C. O. Rock

Fatty acid biosynthesis is catalysed in most bacteria by a group of highly conserved proteins known as the Type II fatty acid synthase (FAS) system. The Type II system organization is distinct from its mammalian counterpart and offers several unique sites for selective inhibition by antibacterial agents. There has been remarkable progress in the understanding of the genetics, biochemistry and regulation of Type II FASs. One important advance is the discovery of the interaction between the fatty acid degradation regulator, FadR, and the fatty acid biosynthesis regulator, FabR, in the transcriptional control of unsaturated fatty acid synthesis in Escherichia coli. The availability of genomic sequences and high-resolution protein crystal structures has expanded our understanding of Type II FASs beyond the E. coli model system to a number of pathogens. The molecular diversity among the pathway enzymes is illustrated by the discovery of a new type of enoyl-reductase in Streptococcus pneumoniae [enoyl-acyl carrier protein (ACP) reductase II, FabK], the presence of two enoyl-reductases in Bacillus subtilis (enoyl-ACP reductases I and III, FabI and FabL), and the use of a new mechanism for unsaturated fatty acid formation in S. pneumoniae (trans-2-cis-3-enoyl-ACP isomerase, FabM). The solution structure of ACP from Mycobacterium tuberculosis revealed features common to all ACPs, but its extended C-terminal domain may reflect a specific interaction with very-long-chain intermediates.


2003 ◽  
Vol 47 (1) ◽  
pp. 297-301 ◽  
Author(s):  
Ross F. Waller ◽  
Stuart A. Ralph ◽  
Michael B. Reed ◽  
Vanessa Su ◽  
James D. Douglas ◽  
...  

ABSTRACT It has long been held that the malaria parasite, Plasmodium sp., is incapable of de novo fatty acid synthesis. This view has recently been overturned with the emergence of data for the presence of a fatty acid biosynthetic pathway in the relict plastid of P. falciparum (known as the apicoplast). This pathway represents the type II pathway common to plant chloroplasts and bacteria but distinct from the type I pathway of animals including humans. Specific inhibitors of the type II pathway, thiolactomycin and triclosan, have been reported to target this Plasmodium pathway. Here we report further inhibitors of the plastid-based pathway that inhibit Plasmodium parasites. These include several analogues of thiolactomycin, two with sixfold-greater efficacy than thiolactomycin. We also report that parasites respond very rapidly to such inhibitors and that the greatest sensitivity is seen in ring-stage parasites. This study substantiates the importance of fatty acid synthesis for blood-stage parasite survival and shows that this pathway provides scope for the development of novel antimalarial drugs.


2016 ◽  
Vol 84 (12) ◽  
pp. 3597-3607 ◽  
Author(s):  
Jiangwei Yao ◽  
Megan E. Ericson ◽  
Matthew W. Frank ◽  
Charles O. Rock

Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogenListeria monocytogenesencode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype ofEscherichia colistrain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate ofL. monocytogenesin laboratory medium. Robust exogenous fatty acid incorporation was not detected inL. monocytogenesunless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth ofL. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth ofL. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth ofL. monocytogenes.


Nature ◽  
2009 ◽  
Vol 458 (7234) ◽  
pp. 83-86 ◽  
Author(s):  
Sophie Brinster ◽  
Gilles Lamberet ◽  
Bart Staels ◽  
Patrick Trieu-Cuot ◽  
Alexandra Gruss ◽  
...  

2006 ◽  
Author(s):  
Srinivas Kodali ◽  
Andrew Galgoci ◽  
Sheo Singh ◽  
Jun Wang

Sign in / Sign up

Export Citation Format

Share Document