fatty acid biosynthetic pathway
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 2)

Synlett ◽  
2021 ◽  
Author(s):  
Stefan Schulz ◽  
Dennis Poth ◽  
Pardha Saradhi Peram ◽  
Susann Hötling ◽  
Markus Menke ◽  
...  

AbstractFor a long time, frogs were believed to communicate primarily via the acoustic channel, but during the last decades it became obvious that various lineages also use chemical communication. In this Account we present our research on the identification of volatile lactones from Madagascan Mantellidae and African Hyperoliidae frogs. Both possess male specific glands that can disseminate a range of volatile compounds. Key constituents are macrocyclic lactones. They show high variability in structure and occurrence. We focus here on the synthetic approaches we have used to clarify constitution and configuration of the glandular compounds. Key synthetic methods are ring-closing metathesis and nucleophilic epoxide opening. Often, but not always, the natural compounds occurs in amounts that excludes their investigation by NMR spectroscopy. Instead, we use GC/MS analysis, GC/IR, microreactions, and synthesis to identify such components. Several aspects of our work will be described giving some insight in our scientific approach.1 Introduction2 Macrocylic Lactones from the Fatty Acid Biosynthetic Pathway3 Unsaturated Lactones4 Terpenoid Lactones5 Macrolide Occurrence6 Conclusions


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Elias Kassab ◽  
Monika Fuchs ◽  
Martina Haack ◽  
Norbert Mehlmer ◽  
Thomas B. Brueck

Abstract Background Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. Results In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. Conclusion The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Carmen J. E. Pee ◽  
Vera Pader ◽  
Elizabeth V. K. Ledger ◽  
Andrew M. Edwards

ABSTRACT Daptomycin is a treatment of last resort for serious infections caused by drug-resistant Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus. We have shown recently that S. aureus can evade daptomycin by releasing phospholipid decoys that sequester and inactivate the antibiotic, leading to treatment failure. Since phospholipid release occurs via an active process, we hypothesized that it could be inhibited, thereby increasing daptomycin efficacy. To identify opportunities for therapeutic interventions that block phospholipid release, we first determined how the host environment influences the release of phospholipids and the inactivation of daptomycin by S. aureus. The addition of certain host-associated fatty acids to the growth medium enhanced phospholipid release. However, in serum, the sequestration of fatty acids by albumin restricted their availability to S. aureus sufficiently to prevent their use in the generation of released phospholipids. This finding implies that in host tissues S. aureus may be completely dependent upon endogenous phospholipid biosynthesis to generate lipids for release, providing a target for therapeutic intervention. To test this, we exposed S. aureus to AFN-1252, an inhibitor of the staphylococcal FASII fatty acid biosynthetic pathway, together with daptomycin. AFN-1252 efficiently blocked daptomycin-induced phospholipid decoy production, even in the case of isolates resistant to AFN-1252, which prevented the inactivation of daptomycin and resulted in sustained bacterial killing. In turn, daptomycin prevented the fatty acid-dependent emergence of AFN-1252-resistant isolates in vitro. In summary, AFN-1252 significantly enhances daptomycin activity against S. aureus in vitro by blocking the production of phospholipid decoys, while daptomycin blocks the emergence of resistance to AFN-1252.


2018 ◽  
Author(s):  
Carmen J. E. Pee ◽  
Vera Pader ◽  
Elizabeth V. K. Ledger ◽  
Andrew M. Edwards

AbstractDaptomycin is a treatment of last resort for serious infections caused by drug-resistant Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. We have shown recently that S. aureus can evade daptomycin by releasing phospholipid decoys that sequester and inactivate the antibiotic, leading to treatment failure. Since phospholipid release occurs via an active process we hypothesised that it could be inhibited, thereby increasing daptomycin efficacy. To identify opportunities for therapeutic interventions that block phospholipid release, we first determined how the host environment influenced the release of phospholipids and inactivation of daptomycin by S. aureus. The addition of certain host-associated fatty acids to the growth medium enhanced phospholipid release. However, in serum, the sequestration of fatty acids by albumin restricted their availability to S. aureus sufficiently to prevent their use in the generation of released phospholipids. This finding implied that in host tissues S. aureus is likely to be completely dependent upon endogenous phospholipid biosynthesis to generate lipids for release, providing a target for therapeutic intervention. To test this, we exposed S. aureus to AFN-1252, an inhibitor of the staphylococcal FASII fatty acid biosynthetic pathway, together with daptomycin. AFN-1252 efficiently blocked daptomycin-induced phospholipid decoy production, even in the case of isolates resistant to AFN-1252, which prevented the inactivation of daptomycin and resulted in sustained bacterial killing. In turn, daptomycin prevented the fatty acid-dependent emergence of AFN-1252-resistant isolates. In summary, AFN-1252 significantly enhances daptomycin activity against S. aureus by blocking the production of phospholipid decoys, whilst daptomycin blocks the emergence of resistance to AFN-1252.


2017 ◽  
Vol 139 (13) ◽  
pp. 4615-4618 ◽  
Author(s):  
Robert W. Haushalter ◽  
Ryan M. Phelan ◽  
Kristina M. Hoh ◽  
Cindy Su ◽  
George Wang ◽  
...  

Lipids ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 265-283 ◽  
Author(s):  
Marta Bou ◽  
Tone-Kari Østbye ◽  
Gerd M. Berge ◽  
Bente Ruyter

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168230 ◽  
Author(s):  
Marte Avranden Kjær ◽  
Bente Ruyter ◽  
Gerd Marit Berge ◽  
Yajing Sun ◽  
Tone-Kari Knutsdatter Østbye

Sign in / Sign up

Export Citation Format

Share Document