Precursor role of branched-chain amino acids in the biosynthesis of iso and anteiso fatty acids in rat skin

Author(s):  
Oku Hirosuke ◽  
Yagi Noriyasu ◽  
Nagata Junichi ◽  
Chinen Isao
2018 ◽  
Vol 2 ◽  
Author(s):  
Akram Abolbaghaei ◽  
B. Dave Oomah ◽  
Hamed Tavakoli ◽  
Farah Hosseinian

Circulating levels of branched chain amino acids (BCAAs) correlate strongly with type 2 diabetes (T2D). The correlation may be associated with insulin-resistance factors independent of glycemic markers currently used in the diagnosis and monitoring of diabetes. This can revolutionize the thought process and methodology not only in diabetes treatment, but also in its advance screening and prevention with BCAAs used as biomarkers and targets for treatment. Whether insulin resistance is the cause or result of BCAAs imbalances requires further investigation. Although the overall diet is important, the role of specific diets targeting the gut microbiome composition and hormone secretion affecting BCAA absorption and metabolism will be explored. Generic diet modifications apparently induce only negligible changes in the intrinsic genetic make-up of the gut and BCAA levels but influence specific modulation of the gut microbiome. This genetic make-up is indeed similar among T2D patients independent of numerous variables including obesity. Short-chain fatty acids (SCFAs), the primary end-products of non-digestible carbohydrates (NDC) fermentation, mediate metabolic imbalances through gut microbiota and gut hormone secretion. This review focuses on extensive evidence gathered using diverse methodologies on the strong parallel correlation between BCAA levels and insulin resistance. Furthermore, the role of specific diets particularly SCFAs as mediators of the stubbornly fixed intrinsic genetic make-up of gut microbiota will be scrutinized to delineate BCAA levels and insulin resistance in T2D.


2016 ◽  
Vol 62 (4) ◽  
pp. 582-592 ◽  
Author(s):  
Miguel Ruiz-Canela ◽  
Estefania Toledo ◽  
Clary B Clish ◽  
Adela Hruby ◽  
Liming Liang ◽  
...  

Abstract BACKGROUND The role of branched-chain amino acids (BCAAs) in cardiovascular disease (CVD) remains poorly understood. We hypothesized that baseline BCAA concentrations predict future risk of CVD and that a Mediterranean diet (MedDiet) intervention may counteract this effect. METHODS We developed a case-cohort study within the Prevención con Dieta Mediterránea (PREDIMED), with 226 incident CVD cases and 744 noncases. We used LC-MS/MS to measure plasma BCAAs (leucine, isoleucine, and valine), both at baseline and after 1 year of follow-up. The primary outcome was a composite of incident stroke, myocardial infarction, or cardiovascular death. RESULTS After adjustment for potential confounders, baseline leucine and isoleucine concentrations were associated with higher CVD risk: the hazard ratios (HRs) for the highest vs lowest quartile were 1.70 (95% CI, 1.05–2.76) and 2.09 (1.27–3.44), respectively. Stronger associations were found for stroke. For both CVD and stroke, we found higher HRs across successive quartiles of BCAAs in the control group than in the MedDiet groups. With stroke as the outcome, a significant interaction (P = 0.009) between baseline BCAA score and intervention with MedDiet was observed. No significant effect of the intervention on 1-year changes in BCAAs or any association between 1-year changes in BCAAs and CVD were observed. CONCLUSIONS Higher concentrations of baseline BCAAs were associated with increased risk of CVD, especially stroke, in a high cardiovascular risk population. A Mediterranean-style diet had a negligible effect on 1-year changes in BCAAs, but it may counteract the harmful effects of BCAAs on stroke.


1982 ◽  
Vol 152 (1) ◽  
pp. 246-254
Author(s):  
Caroline S. Harwood ◽  
Ercole Canale-Parola

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l -leucine, l -isoleucine, and l -valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.


2020 ◽  
Vol 39 (7) ◽  
pp. 2080-2091 ◽  
Author(s):  
Ilaria Buondonno ◽  
Francesca Sassi ◽  
Giulia Carignano ◽  
Francesca Dutto ◽  
Cinzia Ferreri ◽  
...  

2016 ◽  
Vol 15 (5) ◽  
pp. 1728-1739 ◽  
Author(s):  
David Meierhofer ◽  
Melanie Halbach ◽  
Nesli Ece Şen ◽  
Suzana Gispert ◽  
Georg Auburger

2020 ◽  
Vol 33 (2) ◽  
pp. 287-297
Author(s):  
Zhihui Wu ◽  
Jinghui Heng ◽  
Min Tian ◽  
Hanqing Song ◽  
Fang Chen ◽  
...  

AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.


Sign in / Sign up

Export Citation Format

Share Document