Difluoromethylornithine-induced amplification of ornithine decarboxylase genes in Ehrlich ascites carcinoma cells

1985 ◽  
Vol 126 (2) ◽  
pp. 734-740 ◽  
Author(s):  
L. Alhonen-Hongisto ◽  
A. Kallio ◽  
R. Sinervirta ◽  
P/ Seppänen ◽  
K.K. Kontula ◽  
...  
1982 ◽  
Vol 202 (1) ◽  
pp. 267-270 ◽  
Author(s):  
L Alhonen-Hongisto ◽  
P Veijalainen ◽  
C Ek-Kommonen ◽  
J Jänne

Three out of four different mycoplasma strains analysed for the polyamine contents contained relatively high concentrations of putrescine, cadaverine, spermidine and spermine. In addition to ornithine decarboxylase (EC 4.1.1.17) activity, the mycoplasmas also exhibited comparable or higher lysine decarboxylase (EC 4.1.1.18) activity fully resistant to the action of 2-difluoromethylornithine, an irreversible inhibitor of eukaryotic ornithine decarboxylase. 2-Difluoromethylornithine did not modify the polyamine pattern of actively growing mycoplasmas. Ehrlich ascites carcinoma cells and L1210 mouse leukemia cells infected with any of the four mycoplasma strains contained, in addition to putrescine, spermidine and spermine, and also easily measurable concentrations of cadaverine; the latter diamine was absent in uninfected cultures. When the infected cells were exposed to difluoromethylornithine, the accumulation of cadaverine was markedly enhanced. The modification of cellular polyamine pattern by mycoplasmas, especially in the presence of inhibitors of eukaryotic ornithine decarboxylase, could conceivably be used as an indicator of mycoplasma infection in cultured animal cells.


1985 ◽  
Vol 229 (3) ◽  
pp. 711-715 ◽  
Author(s):  
L Alhonen-Hongisto ◽  
A Kallio ◽  
R Sinervirta ◽  
O A Jänne ◽  
C G Gahmberg ◽  
...  

We selected a 2-difluoromethylornithine-resistant Ehrlich ascites-carcinoma cell line that grows in the presence of 20 mM-difluoromethylornithine. These cells contain 10-20 times the normal amount of hybridizable sequences for ornithine decarboxylase (EC 4.1.1.17) in their genomic DNA. We used these gene-amplified cells, their revertant counterparts (grown in the absence of the drug after an established gene amplification) and tumour cells grown in the presence of putrescine to investigate the changes of ornithine decarboxylase gene pattern and simultaneously occurring phenotypic changes, such as tumourigenicity and the expression of cell-surface glycoproteins. In the tumour cells reverted back to the normal gene frequency, not only did the amplified sequences disappear, but there were also signs of gene re-arrangements seen as a ‘gene jump’, when a signal evidently moved to a heavier restriction fragment. Similar gene re-arrangement likewise occurred in cells exposed to putrescine. Although the wild-type tumour cells and the gene-amplified cells readily grew in the peritoneal cavity of mice, the revertant cells and the putrescine-treated cells had lost their tumourigenicity in mice. Gene-amplified tumour cells and the revertant cells showed distinct changes in their surface glycoprotein pattern in comparison with the parental cell line. These findings indicate that alterations of ornithine decarboxylase gene pattern/dosage may be associated with phenotypic changes possibly related to the tumourigenicity of these carcinoma cells.


1977 ◽  
Vol 166 (1) ◽  
pp. 89-94 ◽  
Author(s):  
A Kallio ◽  
H Pösö ◽  
S K Guha ◽  
J Jänne

1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.


Author(s):  
Shaikh Shohidul Islam ◽  
Md. Rezaul Karim ◽  
A. K. M. Asaduzzaman ◽  
A. H. M. Khurshid Alam ◽  
Zahid Hayat Mahmud ◽  
...  

1987 ◽  
Vol 242 (1) ◽  
pp. 205-210 ◽  
Author(s):  
L Alhonen-Hongisto ◽  
P Leinonen ◽  
R Sinervirta ◽  
R Laine ◽  
R Winqvist ◽  
...  

With the use of the isoschizomeric restriction endonucleases HpaII and MspI, we found that mouse tumour ornithine decarboxylase (ODC; EC 4.1.1.17) genes are extensively methylated. ODC genes in L1210 mouse leukaemia cells were apparently more methylated than in Ehrlich ascites carcinoma, as revealed by the use of HpaII endonuclease, yet the digestion of genomic DNA isolated from these two murine tumour cell lines with MspI, which cleaves at a CCGG sequence, also with internally methylated cytosine, resulted in an apparently identical restriction pattern. It is possible that the amplification of ODC genes in Ehrlich ascites-carcinoma cells in response to 2-difluoromethylornithine (DFMO) was associated with hypomethylation, or that less-methylated genes were amplified. A human myeloma (Sultan) cell line only revealed three separate hybridization signals when cleaved with HpaII. One of these signals was amplified under the pressure of DFMO. When cleaved with MspI, these three HpaII fragments disappeared and were replaced by a double signal of 2.3-2.4 kilobase-pairs (kbp) in size. The amplified ODC sequences in the Sultan myeloma cell line apparently originated from chromosome 2, as indicated by a unique hybridization signal in a 5.8 kbp HindIII fragment specific for the human ODC locus on chromosome 2. A comparison of different human cells, the Sultan myeloma, a lymphocytic B-cell leukaemia (Ball), normal mononuclear leucocytes and leucocytes obtained from leukaemia patients, revealed interesting differences in the methylation of ODC genes. The use of two restriction endonucleases (HpaII and CfoI), the cleavage site for both of which contains a CG sequence and which only cleave when cytosine is unmethylated, indicated that ODC genes in the lymphocytic leukaemia cells were much less methylated than those in the normal leucocytes or in the Sultan cells.


1965 ◽  
Vol 43 (2) ◽  
pp. 209-224 ◽  
Author(s):  
B. I. Uppin ◽  
P. G. Scholefield

Studies have been made of the effects of metabolic inhibitors on the oxidation and incorporation of radioactivity into nucleotides of glucose labelled in the 1, 2, and 6 positions. The results indicate that in Ehrlich ascites carcinoma cells the predominant oxidative pathway is the hexosemonophosphate shunt. Investigation of the time courses of oxidation of the labelled glucose molecules confirms this conclusion. The pattern of incorporation of radioactivity initially suggests that nucleotide ribose is not formed via this pathway. However, it is shown that the coupling of an active transketolase system with the other enzymes of the hexosemonophosphate shunt provides a sufficient explanation of all the experimental observations. The conclusion is reached that pentose is formed by oxidation of glucose through the shunt but that the labelling pattern is largely established as the result of the exchange reaction catalyzed by transketolase.


Sign in / Sign up

Export Citation Format

Share Document